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ABSTRACT 

Specialized mechanical designs are capable of decreasing the power cost in robot limbs that 

perform repetitive tasks. This paper outlines an approach to designing a robot limb for a specific 

repetitive task. The task that is being designed for here is legged gait. In this paper every aspect 

of this problem has been tackled and optimized. The geometry of an advanced hybrid leg 

mechanism has been optimized to reduce power required by 8.8%. Compliant parallel springs 

have been added to the design and can reduce the power required by upwards of 50%. Notably: 

this compliance optimization problem has been reduced to a quadratic programming problem 

that converges to the global optimum in just seconds. An analytical formula for the optimal gear 

ratio has been discovered that finds the optimal gear ratio for the motor by minimizing electrical 

losses due to armature resistance, while constraining the velocity and torque of the motor to 

within its continuous operating region. Finally, a method for finding optimal gait patterns has 

been developed using a dynamic simulator and a parameterization of the gait patterns.    



INTRODUCTION  
 

Specialized mechanical designs are capable of decreasing the power cost in robot limbs that 

perform repetitive tasks. This paper, outlines an approach to designing a robot limb for a specific 

repetitive task. The task that is being designed for here is legged gait. 

 

Traditionally legged robots have been actuated in serial, with each leg freedom being controlled 

by a single actuator [1]–[4]. These robots tend to have cost of transport values much higher than 

their biological counterparts [5]. This is due at least in part to inefficiencies in their mechanical 

system and structure. 

 

There are researchers who have explored other forms of actuation. These researchers use motors 

to drive mechanisms that are designed for a specific application. The robotic systems are capable 

of relatively long use-life from an onboard fuel source and low cost of transport. However, many 

of them are not intended for advanced and robust terrain navigation or other high level 

functionalities [6] [7]. One system that has seen successful in both autonomy and robust terrain 

navigation is the Atrias robot by the Dynamic Robots Lab (DRL) at Oregon State University. 

This robot has shown the capability of traversing uneven terrain while having a relatively long 

battery life.  This success is due in no small part to their advanced leg design which they used to 

engineer the passive dynamics of their system. They chose to design their robot’s passive 

dynamics to conform to the Spring Loaded Inverted Pendulum Model. This allows them to 

model their system in a simple known way, and bypass many controller design problems [8]. 

 Their leg design is a planar, four-bar mechanism in series with a revolute joint. This system uses 

a simple planar, serial mechanism structure. Our actuation method, on the other hand, employs a 

three dimensional mechanism that gives the potential to maximally utilize the motors that drive 

the system. In order to do this the geometry of the mechanism must be optimized.   

 

An advanced mechanism such as the one described here presents a difficult design task. Spatial 

mechanisms have counter-intuitive properties that make them difficult to design without proper 

tools. This paper describes a method to use optimization techniques to select a unique 

configuration of the linkage geometry and stiffness that suits the specific requirements of the 



system. This includes not only an optimization of the actual geometric properties of the leg (link 

lengths, offset angles etc), but an optimization of other parameters, such as the gear ratio of a 

motor gear box and the stiffness of springs added across the joints of the limb. Each subsystem 

will be described in detail below: 

 

Subsystem 1 - will be the optimization of the leg geometry, this subsystem will vary the 

parameters that define the linkage of the leg in order to reduce the mechanical power needed to 

achieve the desired gait pattern. 

Subsystem 2 - will be the optimization of a stiffness matrix of the leg. This subsystem adds 

several parallel springs to the leg, and then tunes their stiffness values to minimize the 

mechanical power requirement.  

Subsystem 3 - is the optimization of the motor gear ratio. This subsystem will optimize the gear 

ratio of a gear box attached to the motors to reduce their electrical power usage.  

Subsystem 4 - is the gait pattern generation subsystem. This subsystem will tune parameters that 

define the gait pattern of the robot and use a dynamic simulator to find if which gait pattern is 

both stable and takes minimal effort from the motors.  

 

Subsystem - Leg Geometry Optimization (Michael Naso) 
 

The first step in optimizing the Leg Geometry is determining the parameter it is being optimized 

around. In this case the Leg Geometry is being optimized to minimize power consumption of the 

motors. A given gait pattern will include leg angles, velocities, and output force. This means that 

there is some fixed output power for this gait pattern. For any generic leg, each combination of 

position, velocity and force, will require various torques and velocities from the leg actuators. 

Based on the actuator configuration some motors may be doing positive work and some may be 

doing negative work (eg. braking). However, when determining the objective function only 

positive work will be accounted for. This is done because if the positive work is minimize so will 

the negative work be. There is already prior work done for this optimization such as function to 

calculate the torques and velocity at joints for a given gait pattern and leg geometry. 

Furthermore, another function to convert these torque and velocities at joints into torques and 

angular velocity for the motors. Improvements will be made to this optimization by reducing the 



variables using monotonicity as well as exploring different methods to find the minimum. These 

methods include gradient methods such as newton’s as well as possible using CMA-ES. 

 

2.1 Nomenclature: 

1. R, Conditioning number. This is the 2 norm conditioning number, it is the ratio of the 

largest eigenvalue to the smallest eigenvalue of a matrix.              

2. J, Jacobian of the leg. This is the standard Jacobian matrix, it transforms angular 

velocities of the motors to the linear velocity of the end effector.                   

3. 𝑡𝑚[𝑠],  Minimum step time. This is the time taken to traverse the gait pattern when the 

motors are running at full capacity.   

4. 𝑃𝑚[𝑊], Power. This is the power of the motor. 

5. 𝜏𝑚[𝑁𝑚] , This the torque exerted from the motor. 

6. 𝜔𝑚 [
𝑟𝑎𝑑

𝑠
] , This is the angular speed of the motors. 

7. 𝜏𝑜[𝑁𝑚] , This is the torque out at the joints of the leg geometry. 

8. 𝑉0 [
𝑚

𝑠
] , This is the velocity outputs at the joints of the leg geometry 

9. 𝐿 [m], This the link lengths for the leg geometry 

10. 𝜃𝑙 [rad], This is the angles at joints of the leg geometry 

11. F[N] , Output forces. 

12. G , This is the gait pattern. 

13. 𝑃𝑚 , This is the positioning of the motors with respect to the joints.  

14.  𝜏𝑚𝑎𝑥 , Maximum torque the motors can operate with. 



15. 𝜔𝑚𝑎𝑥 , Maximum angular velocity the motors can operate with. 

16. 𝜃𝑚𝑎𝑥 , Maximum angles for which each joint can bend. 

2.2 Mathematical Model 

The mathematical model used during modeling the leg geometry mainly had to do with the 

physics behind the kinematics. This was a complex model developed by Nathan Cahill that used 

reverse kinematics to return velocity and torques at the joints of the leg given a gait pattern. The 

gait pattern used was data from a cat walking. Further information of the equations behind the 

kinematics can be found in the appendix. 

[𝜏𝑜 , 𝑉𝑜 ] = 𝑓(G, L)  (1) 

Equation (1) is a simplistic representation of the reverse kinematic function. G is the gait pattern, 

and L is the lengths and joint angles of the leg geometry. This function outputs the torques and 

velocities at the joints in the leg throughout the gait pattern. Equation (2) takes this as an input 

and converts them to torques and angular velocities for the 3 motors.  

[𝜏𝑚, 𝜔𝑚] = 𝑓(𝐿, 𝜏0, 𝑉𝑜)  (2) 

Simplification were used to reduce the degrees of freedom in the model. There were 44 degrees 

of freedom which was reduced to 32 by creating fixed values for certain parameters. This was 

done to reduce the run time of solving for the solution using multistart and fmincon. 

Furthermore, by reducing the degrees of freedom this allowed Latin hypercube sampling to be 

more effective in finding feasible solutions faster. 

Objective Function 

 

The objective function of this optimization is the equation for the power of the motors. This is 

the summation of all three motors power outputs over a period of a gait pattern.  

𝑃 = ∑ 𝜏𝑚𝜔𝑚 

This equation will be dependent of the variables described in the aforementioned function that 

were used to obtain the torque and angular velocities of the motors 

2.2.2 Constraints 

 



1. Conditioning number of Jacobian the leg must be less than 10 throughout the gait pattern. 

This will ensure that the leg is not close to singularity. When completing  

2. The lengths must be positive numbers.  

𝑙1 > 0 

𝑙2 > 0 

𝑙𝑖 > 0 

3. The power output of the each motor must stay within the safe operating region of the 

motor.  

0 < 𝑃𝑚𝑎𝑥 < 𝜏𝑚𝑎𝑥𝜔𝑚𝑎𝑥 

4. Joint-leg angle limitation for each joint 

−𝜃𝑚𝑎𝑥 < 𝜃𝑙1
< 𝜃𝑚𝑎𝑥 

−𝜃𝑚𝑎𝑥 < 𝜃𝑙2
< 𝜃𝑚𝑎𝑥 

−𝜃𝑚𝑎𝑥 < 𝜃𝑗 < 𝜃𝑚𝑎𝑥 

5. Conditioning number of the Jacobian.  

Since the inverse of the Jacobian is needed to calculate motor torques, the Jacobian needs 

to be invertible. Constraining the R conditioning number of the Jacobian makes sure the 

optimization will not pick a geometry that has a singularity in the region of the gait 

pattern.  

 

Note: The original optimization problem performed on this leg structure was to increase 

this parameter of the leg because early designs were close to singular throughout the 

workspace of the robot due to the complicated actuation method. Optimization techniques 

helped to make increase the conditioning number and give the leg full mobility in three 

dimensional space.  

2.2.3 Design Variables and Parameters 

 

The design variables for this system are the leg geometry parameters. They will be listed here: 

The thigh and shank lengths of the legs are included in the optimization. There is also one offset 

angle for the thigh that is also included. Each motor is attached to the leg by a two link RSS 

mechanism. These mechanisms can be defined by two length parameters. Each motor is 

positioned relative to the hip joint by two lengths and an angle, these parameters are also 



included in the optimization. Each RSS linkage must connect to the leg structure, each 

connection point is parameterized by 3 parameters relative to the leg segment. These are also 

included in the optimization. In all there are 27 parameters included in the optimization. 

2.2.4 Model Analysis 

 

Based on the degrees of freedom and the amount of variables in the objective the function will 

yield a minimum. Furthermore, all 32 design variables will have upper and lower bounds to 

ensure the space is well constraints and yields feasible solutions. In addition, a constraint on the 

R condition number is used to reduce the singularities at a given point in the gait pattern. This 

constraint is necessary due to limitation in actuation methods.  

2.2.5 Optimization Study 

 

The objective function has many local minimum therefore Latin hyper cube sampling was used 

to gather initial points. In order to ensure these point are feasible, a range between the lower 

bounds and upper bounds was used. In addition to make sure these initial states were feasible the 

R condition constraint was used in the Latin hyper cube sampling. Furthermore, once these initial 

states were found a multistart method with a 1000 initial points was used to optimize the solution 

around these feasible domains. Given that function was well constraint the method used for 

optimization was MATLAB fmincon. 

Due to the there being very few possible configuration of the 32 dimensioned leg geometry that 

follows the constraints only 5 initial points were feasible out of 100,000 samples. These 5 initial 

points were then inputted into multistart optimization as the initial geometry and power outputs 

were determined. 

 

 

 

 

Table 1: Initial Points from Latin Hyper Cube Sampling 



Initial Points Initial Total Power Optimized Total Power 

1 10.2541 1.4273 

2 11.6984 3.8032 

3 10.1132 6.6763 

4 14.1094 1.3649 

5 10.5678 3.2486 

 

Optimization around an educated guess of the leg geometry was done to see the sample space 

around this initial guess was more viable. In order to sample the space around this given point a 

random number was added to the initial leg geometry and iteration was done to find a more 

optimal solution using multistart and fmnicon. 

Table 2: Optimization around educated guess 

Initial Points Initial Total Power Optimized Total Power 

1 1.2905 1.2855 

2 1.4789 1.3567 

3 1.5376 1.4106 

4 1.4103 1.4026 

5 1.4576 1.3987 

 

This proved to be the most effective method as it yielded a result of 1.2855 for the total power 

consumption. This shows that for complicated optimization problems sampling around an 

intuitive initial point will yield better results. This due to the fact the Latin hypercube sampling 

was very costly in run time due to the 32 dimensions in the design variable space. Furthermore, 



due to the R conditioning constraint there weren’t many feasible points scattered within the 

space. If more computations could be done faster sampling over a million points may have 

yielded better results for the points found using Latin Hypercube Sampling. 

Sensitivity Analysis was done on the constraints to determine which constraints were active and 

the Lagrange multipliers of those constraints.   

 

Figure 1 

In Figure 2.5.1 it can be seen that the lower bounds on the design variables had very high 

Lagrange multipliers on certain design variables. For instance the 21
st
  and 17

th
 design variable 

had a Lagrange multiplier of 5.9982 and 4.9628. By relaxing this constraint this could yield high 

improvement in the minimization of power however the lower bounds for these variables are 0 

and cannot be relaxed. It is shown that these constraints in the lower bound were active. 

 



Figure 2 

In Figure 2.5.2 the Lagrange multipliers were not as high yielding a max of 1.4756. Relaxing the 

constraint on the design variable with the Lagrange multiplier of 1.4756 would minimize the 

optimization result slightly. However, the upper bounds cannot be relax due to limitation of the 

size of the leg. 

 

Figure 3 

The Lagrange multipliers for R conditioning number yielded the smallest Lagrange multipliers. 

There is very small improvement that can be made by relaxing this constraint. 



 

Figure 4 

As can be seen in Figure 2.5.4 the R conditioning constraint has a significant effect on the total 

power. However, with an initial R conditioning number of 7 for my solution there isn’t a lot of 

room for improvement by relaxing this constraint any more. Furthermore, at an R conditioning 

number of 10 the Lagrange multiplier for the R conditioning number constraint is reduced to 

0.0657.  

2.2.6 Parametric Study 

 

Due to the objective function containing 32 design variables the space of function is very large. 

Furthermore, the function has very many local minimums making it difficult to find a global 

minimum. Due to these characteristic of the function different initial parameters will change the 

optimization results. By using fmincon it finds the closest local minimum to that initial point. In 

order to look for a global minimum effectively Latin Hypercube sampling was done on the 

space. 100,000 points were sampled but only 5 of these points were in the feasible domain 

created by the bounds and constraint on the design variables. Theses 5 points were then 

optimized using multistart will a 1000 points to look for an optimal solution around the feasible 

domains. 

2.2.7 Discussion of Results 

 



The results of the optimization were fairly good. The power output was reduced 8 % from the 

previous optimization done. Furthermore, the solution obtain was realistic and could be applied 

to real world application. When designing the leg geometry the main design implication was 

creating a constraint on the R conditioning number. This allowed the optimization results to be 

valid leg geometry that can work in real application. The lower bound and upper bound of some 

of the design variables were active. However, these constraints could not be relaxed due to 

impractical leg geometry that could not be created. These bounds allowed the design variables to 

be constraint to produce realistic results with the objective function used. In addition, the main 

constraint that was active and could be relaxed was the R condition number. In Figure 2.5.4 it 

shows that the optimal R conditioning number is around 7. Further relaxing this constraint 

doesn’t yield better results. The R conditioning number is the main constraint that allows the 

optimization to create realistic leg geometry that can complete the gait pattern efficiently.  

Improvements that could be made in the model is reducing the dimensionality of the problem. 32 

design variables reduced the computational ability to sample the space effectively. Furthermore, 

if higher processing computer was available the Latin Hypercube sample could be increased to a 

million points. In addition, when optimizing these initial points a multistart method with 10,000 

point would be more effective in finding an optimal solution within the feasible domain of the 

initial point. This would allow the optimization to be closer to finding a global solution. In 

addition, by reducing the dimensionality of the problem the resulting function could have less 

local minimums increasing the chances of finding a global minimum. 

 

3 Subsystem – Spring Optimization (Hosain Bagheri) 
 

3.1 Design Problem Statement 

The ideal is simple, yet ingenious; through the implementation of springs upon a legged robot, 

we intend not only to improve the performance, but more importantly decrease total power cost.  

One of the continuous dilemmas faced when designing efficient and effective robots is how to 

approach the problem at hand.  Do we design a lightweight robot that lacks robustness and 

agility in order to decrease the power required to operate it, or do we design a robust and agile 

robot that will require greater power consumption?  The situation at hand is a double edged 



sword.  However one method of finding the middle ground and providing the harmony between 

the better of the two worlds is by implementing springs into the system.  Springs are excellent in 

storing potential energy, and are usually used for returning something to its original position.  In 

this specific application, springs will take the kinetic energy created during motors breaking and 

absorb it in the form of potential energy and transfer it back to kinetic energy in the (passive) 

dynamic of motion.  While the applications of springs in robotics are not something new, they 

have been commonly seen to be used in damping systems.  However, in systems which the 

inertia (of the legs) dominates, springs are quite beneficial with their ability to overcome this 

inertia.  We indeed to use it in the designed linkages to provide flexibility and to decrease total 

motor power cost.  The general flow of the process is as follows:  

 

Using the empirically obtained gait pattern data of a cat, which includes such things as force, 

velocity, time, and leg angles, the effect of springs will be considered while taking into to 

account their stiffness and offset angles, to determine if the total motor power can be reduced 

when comparing the limb linkage design with and without the implementations of spring. Note 

that a series of Jacobian matrices will be utilized to transfer of information from one coordinate 

system to another.  

3.2 Nomenclature: 

1) 𝑇𝑚𝑜𝑡𝑜𝑟𝑠 [N ∙ m], motor torque 

2) 𝐹𝑚𝑜𝑡𝑜𝑟 [N], motor force  

3) 𝐹𝑡𝑜𝑡𝑎𝑙  [N], total force  

Gait Pattern Input 

•End Effector Force 

•End Effector Velocity 

•Time Steps 

•Leg Angles 

•Jacobian Matrices 

Limb Kinematics 
with Springs 

•Spring Stiffness Matrix 

•Offset Angles 

Motor Power 
Output 

•Total Power 

•Without Springs 

•With Springs 

•Spring Striffness  

•Offset Angles 



4) 𝐹𝑡𝑜𝑡𝑎𝑙,𝑚𝑜𝑡𝑜𝑟 [N], total force in motor coordinates  

5) 𝐹𝑠𝑝𝑟𝑖𝑛𝑔[N], spring force   

6) 𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑚𝑜𝑡𝑜𝑟 [N], spring force in motor coordinates 

7) 𝑉𝑚𝑜𝑡𝑜𝑟 [m/s], motor velocity  

8) 𝑃𝑚𝑜𝑡𝑜𝑟[W], total motor power 

9) 𝐾 [𝑁/𝑚], spring stiffness matrix 

10) 𝑘 [𝑁/𝑚], spring stiffness constant 

11) 𝛽 [𝑟𝑎𝑑], offset angle 

12) 𝜃 [𝑟𝑎𝑑], leg angle 

13) 𝐽𝑙𝑒𝑔, Jacobian of the leg. This is the standard Jacobian matrix which transforms angular 

velocities of the motors to the linear velocity of the end effector.      

3.3 Mathematical Model 

3.3.1 Objective Function  

 

Figure 5. Robot Leg Schematic 

With the absence of springs, the total end effector force (at the robot’s ankle) will only be 

generated by the motors.  Although through the implementation of springs, the total end effector 

force will be a collective effort of effort from the motors and spring.  Using Hooke's law and 

considering the offset angle at the robot’s leg angle, the spring force can be formulated.  The gait 

pattern provides the end effector force and velocity.  With the provided information and 



calculated spring force, the motor force can be obtained and multiplied by the velocity to obtain 

the power. It should be noted that a series of Jacobian matrices will need to be used to transfer 

the coordinate system from the end effector to the motor coordinate system.  

𝐹𝑚𝑜𝑡𝑜𝑟𝑠 = 𝐹𝑡𝑜𝑡𝑎𝑙,𝑚𝑜𝑡𝑜𝑟 − 𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠,𝑚𝑜𝑡𝑜𝑟 

𝐹𝑚𝑜𝑡𝑜𝑟𝑠 = 𝐵𝑚 − 𝐴𝑚𝑥 

(1) 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = 𝐹𝑚𝑜𝑡𝑜𝑟𝑠
𝑇 ∙ 𝑉𝑚𝑜𝑡𝑜𝑟𝑠 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = (𝐵𝑚 − 𝐴𝑚𝑥)𝑇𝐶𝑚 

(2) 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠
2 = (𝐶𝑚𝑑𝐵𝑚 − 𝐶𝑚𝑑𝐴𝑚𝑥)𝑇(𝐶𝑚𝑑𝐵𝑚 − 𝐶𝑚𝑑𝐴𝑚𝑥)

= 𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐵𝑚 − 𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚𝑥 − 𝑥𝑇𝐴𝑚
𝑇 𝐶𝑚𝑑

2 𝐵𝑚 + 𝑥𝑇𝐴𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚𝑥

=
1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 + 𝑐 

𝐻 = 2𝐴𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚 

 𝑓 = −2𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚 

𝑐 = 𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐵𝑚 

(3) 

Please see appendix for detailed derivation.  

3.3.2 Constraints 

 

The main physical constraint is that the motor torque has a maximum allowable torque value 

based on the motor’s velocity.  The maximum allowable motor torque can be calculated from the 

information provided in the Motor Optimization Subsystem, where end effector velocity 

acquired from the gait pattern would be mapped to motor coordinates and evaluated at every 

time step. The other physical constraints is based on the provided gait pattern information, in 

which it is known that the robot does not have abduction and adduction about the hip joint, thus 

the leg angles and springs associated in this plane can be disregarded.  Lastly, a 

physical/practical constraint is that the stiffness matrix is positive symmetric matrix.  



𝜏𝑚𝑜𝑡𝑜𝑟𝑠 ≤ max 𝜏𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 

𝐽𝑇𝐹𝑚𝑜𝑡𝑜𝑟 ≤ 𝑇 

𝐹𝑚𝑜𝑡𝑜𝑟 ≤ (𝐽𝑇)−1𝑇 

𝐵𝑚 − 𝐴𝑚𝑥 ≤ (𝐽𝑇)−1𝑇 

−𝐴𝑚𝑥 ≤ (𝐽𝑇)−1𝑇 − 𝐵𝑚 

−𝐴𝑚𝑥 ≤ 𝑏 

(4) 

𝑇 = {(
217 −  108

0 − 8000
∙

2𝜋

60
) 𝑉𝑚𝑜𝑡𝑜𝑟𝑠 + 217} /1000 (5) 

𝜃 = [

𝜃1

𝜃2

𝜃3

] = [
𝜃1

0
𝜃3

] (6) 

𝛽 = [

𝛽1

𝛽2

𝛽3

] = [
𝛽1

0
𝛽3

] (7) 

𝐾 = [

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

] = [

𝑘11 𝑘12 𝑘13

𝑘12 𝑘22 𝑘23

𝑘13 𝑘23 𝑘33

] = [
𝑘11 0 𝑘13

0 0 0
𝑘13 0 𝑘33

] (8) 

 

3.3.3 Design Variables and Parameters 

 

The gait pattern provides us with the parameter values of the leg (flexion/extension) angles, 

which consists of the hip and knee joint.  The gait pattern also provides us with the end effector 

force and velocity, which will have to put into motor coordinate systems.  The design variables 

are the stiffness matrix and the offset angles, which after applying the constraints there will be 5 

degrees of freedom.  

Table 2. Design Variables and Parameters 

Design Variables Design Parameters 

𝛽1, Offset Angle at Hip Joint 𝜃1, Hip Angles - Flexion/Extension 

𝛽3, Offset Angle at Knee Joint 𝜃3, Knee Angles - Flexion/Extension 



𝑘11, Spring Stiffness at Hip Joint 𝐹𝑡𝑜𝑡𝑎𝑙,𝑎𝑛𝑘𝑙𝑒, End Effector Force 

𝑘33, Spring Stiffness at Knee Joint 𝑉𝑡𝑜𝑡𝑎𝑙,𝑎𝑛𝑘𝑙𝑒, End Effector Velocity 

𝑘13, Spring Stiffness across the Hip and Knee   

 

3.3.4 Summary Model 

 

Objective Function:  

min
𝐾,𝛽

𝑃𝑚𝑜𝑡𝑜𝑟𝑠
2 =

1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 

𝐻 = 2𝐴𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚 

 𝑓 = −2𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚 

(9) 

Constraints:  

𝑠. 𝑡. 𝐴𝑚𝑥 ≤ 𝑏 

𝑏 = (𝐽𝑇)−1𝑇 − 𝐵𝑚 

(10) 

𝑘13 ≥ 0 (11) 

𝑘13 ≥ 0 (12) 

𝑘13 = 𝑘31  (13) 

𝑘12 = 𝑘21 = 𝑘22 = 𝑘23 = 𝑘32 = 0 (14) 

𝜃2 = 𝛽2 = 0 (15) 

Note that earlier in the design formulation, the length and locations of the springs were 

incorporated into the equations.  However, they were removed in order to decrease the 

complexity of the problem and provide the ability to formulate a linear equation for the total 

motor power.  Therefore, the current problem simply considers the influence of springs, but 

another optimization process can be established in the future in which based on the output spring 

stiffness values it would find the ideal location to place the spring on the robot’s leg.   



3.4 Optimization Study 

Following the mathematical model, a code was written in Matlab in which fmincon and 

quadprog were utilized to obtain the stiffness matrix and offset angles while minimizing the total 

motor power.  For fmincon, the linear equation for power was utilized with the option of SQP to 

increase the efficiency of the process, while for quadprog the quadratic equation for power was 

used.  The solution obtained from both methods matched, and it was seen that through 

implementation of springs, the total power was decreased by about 58%.  The values of the 

stiffness matrix were reasonable, especially considering the values of empirical end effector 

force and velocity, which are normalized to the weight of the robot and have a max value of 

about 0.6 and 0.7, respectively.  The knee joint was seen to have the greatest spring stiffness, 

when compared to that of the hip and the one across the hip and knee.  This is due to the fact that 

2 body links are working at the knee joint, thus requiring greater spring stiffness, while the others 

only work on body link.  Through debugging the code, it was observed that the motor gear ratio 

and moment of inertia of the leg have influence on the optimization process.  Such components 

like motor gear ratio and moment of inertia were incorporated to make the problem more 

realistic.  For example there is a point in the gait cycle which the robot leg does not have contact 

with the ground, making the reactionary force and thus the end effector zero.  Although, by 

incorporating the inertia of the leg we can still account for the forces in instants such as these.  

When calculating the maximum allowable motor torque, initially gears were not considered.  

Although since one of the existing subsystems deals with the optimization of the gear ratio, we 

decided to incorporate it into the calculation by multiplying the gear ratio to the motor velocity.  

It was seen that by increasing the gear ratio, the stiffness matrix was seen to decrease in value, 

while the total motor power stayed the same.  This indicates that there a given threshold for gear 

ratio, in which no additional power can be saved.  Furthermore, when increasing the gear ratio, 

more of the work is being done by the motors and less by the springs.  In the situation in which 

gear ratio was decreased, the stiffness matrix increased along with total motor power. The 

adverse was seen when decreasing the gear ratio.  When decreasing the gear ratio, more of the 

work is being done by the motors and springs.  It was seen that by increasing the moment of 

inertia, the stiffness matrix and total power would increases. The adverse effect is seen when 

decreasing the moment of inertia.  This indicates that the greater moment arm and thus mass, will 

increase the springs stiffness to counterbalance it.  Furthermore, the increase of moment of 



inertia will required greater work to complete a task and thus an increase in motor power. These 

are all sound results based on engineering interoperations and intuitions.  Unfortunately, little 

parametric study was performed since only one gait pattern was provided.  Even though the other 

subsystems are on the optimization of the geometry and gait pattern, it is very computationally 

costly to run them for results.  However, it would be quite interesting to confirm if the 

implementation of springs on the gait pattern would indeed decrease the total required motor 

power.  Also, to determine if applied spring would hinder the gait pattern.  Furthermore, it would 

be nice to see how the stiffness matrix would change in respect to the leg geometry, and what the 

length and location of the springs would have to be to obtain a more optimal solution in 

decreasing the total motor power.  If time permitted, those are some areas where future 

investigation would have been performed.  

  



 

Figure 6. Total Motor Power Optimization Results 

Table 3. Total Motor Power Optimization & Spring Stiffness Results 

 Fmincon Quadprog 

Total Motor Power without Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/𝑜 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 1.2879E3 1.2879E3 

Total Motor Power with Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/ 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 537.2587 537.2587 

Spring Stiffness at Hip Joint, 𝑘11 (𝑁𝑚/𝑟𝑎𝑑) 0.0339 0.0339 

Spring Stiffness at Knee Joint, 𝑘33 (𝑁𝑚/𝑟𝑎𝑑) 0.2349 0.2349 

Spring Stiffness across the Hip and Knee, 𝑘13, 𝑘31(𝑁𝑚/𝑟𝑎𝑑) 0.0520 0.0520 

Offset Angle at Hip Joint, 𝛽1 (𝑟𝑎𝑑) -0.0216 -0.0216 

Offset Angle at Knee Joint, 𝛽3 (𝑟𝑎𝑑) 0.0956 0.0956 

 



 

Table 3. Total Motor Power Optimization With Increase Gear Ratio 

Table 3. Total Motor Power Optimization & Spring Stiffness Results  

With Increase Gear Ratio 

Increase in Gear Ratio by 10 Fmincon Quadprog 

Total Motor Power without Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/𝑜 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 1.2879E3 1.2879E3 

Total Motor Power with Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/ 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 537.2587 537.2587 

Spring Stiffness at Hip Joint, 𝑘11 (𝑁𝑚/𝑟𝑎𝑑) 0.0244 0.0244 

Spring Stiffness at Knee Joint, 𝑘33 (𝑁𝑚/𝑟𝑎𝑑) 0.1689 0.1689 

Spring Stiffness across the Hip and Knee, 𝑘13, 𝑘31(𝑁𝑚/𝑟𝑎𝑑) 0.0374 0.0374 

Offset Angle at Hip Joint, 𝛽1 (𝑟𝑎𝑑) -0.0216 -0.0216 

Offset Angle at Knee Joint, 𝛽3 (𝑟𝑎𝑑) 0.0956 0.0956 



 

Table 4. Total Motor Power Optimization With Decrease Gear Ratio 

Table 4. Total Motor Power Optimization & Spring Stiffness Results  

With Decrease Gear Ratio 

Decrease in Gear Ratio by 10 Fmincon Quadprog 

Total Motor Power without Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/𝑜 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 1.2879E3 1.2879E3 

Total Motor Power with Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/ 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 1.0597E3 1.0597E3 

Spring Stiffness at Hip Joint, 𝑘11 (𝑁𝑚/𝑟𝑎𝑑) 0.1363 0.1363 

Spring Stiffness at Knee Joint, 𝑘33 (𝑁𝑚/𝑟𝑎𝑑) 0.5105 0.5105 

Spring Stiffness across the Hip and Knee, 𝑘13, 𝑘31(𝑁𝑚/𝑟𝑎𝑑) 0.2179 0.2179 

Offset Angle at Hip Joint, 𝛽1 (𝑟𝑎𝑑) -0.1013 -0.1013 

Offset Angle at Knee Joint, 𝛽3 (𝑟𝑎𝑑) 0.3680 0.3680 



 

Table 5. Total Motor Power Optimization With Increase Moment of Inertia 

Table 5. Total Motor Power Optimization & Spring Stiffness Results  

With Increase Moment of Inertia 

Increase in Moment of Inertia by 0.04 Fmincon Quadprog 

Total Motor Power without Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/𝑜 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 2.9842E3 2.9842E3 

Total Motor Power with Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/ 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 900.0445 900.0445 

Spring Stiffness at Hip Joint, 𝑘11 (𝑁/𝑚) 0.0217 0.0217 

Spring Stiffness at Knee Joint, 𝑘33 (𝑁/𝑚) 0.1560 0.1560 

Spring Stiffness across the Hip and Knee, 𝑘13, 𝑘31(𝑁/𝑚) 0.2843 0.2843 

Offset Angle at Hip Joint, 𝛽1 (𝑟𝑎𝑑) 0.0389 0.0389 

Offset Angle at Knee Joint, 𝛽3 (𝑟𝑎𝑑) 0.0843 0.0843 



 

Figure 6. Total Motor Power Optimization Results With Decrease Moment of Inertia 

Table 6. Total Motor Power Optimization & Spring Stiffness Results  

With Decrease Moment of Inertia 

Decrease in Moment of Inertia by 0.01 Fmincon Quadprog 

Total Motor Power without Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/𝑜 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 1.0128E3 1.0128E3 

Total Motor Power with Springs, 𝑃𝑚𝑜𝑡𝑜𝑟𝑠,𝑤/ 𝑠𝑝𝑟𝑖𝑛𝑔𝑠(𝑊) 497.4822 497.4822 

Spring Stiffness at Hip Joint, 𝑘11 (𝑁𝑚/𝑟𝑎𝑑) 0.0374 0.0374 

Spring Stiffness at Knee Joint, 𝑘33 (𝑁𝑚/𝑟𝑎𝑑) 0.3182 0.3182 

Spring Stiffness across the Hip and Knee, 𝑘13, 𝑘31(𝑁𝑚/𝑟𝑎𝑑) 0.0318 0.0318 

Offset Angle at Hip Joint, 𝛽1 (𝑟𝑎𝑑) 0.0130 0.0130 

Offset Angle at Knee Joint, 𝛽3 (𝑟𝑎𝑑) 0.1698 0.1698 

 



4 Subsystem – Motor Optimization (Peng Wei) 
4.1 Problem Statement 

In this robot, a high torque is required at a relatively low shaft speed, thus a gear system is 

needed to help get the job done. Gears can increase or decrease the speed of rotation (decrease or 

increase the torque on the other hand) and can easily be used to reverse the direction of rotation. 

The goal of this subsystem is to minimize the input power of motors by changing the gear ratios 

and ensure the motor running in continuous operation range. An optimized gear ratio allows the 

motor to run at an efficient condition when the gait pattern is fixed and that high efficiency is 

beneficial to the total energy cost of this robot. However, the gear ratio is restricted by some 

constraints. For example, the maximum speed is fixed for some mechanical reasons and the 

motor should run under continuous operating conditions to satisfy the thermal limits. At the end 

of the day, this will become an optimization problem where minimizing the input power is the 

objective function and those mechanical and thermal limits can be regarded as the constraints. To 

accomplish that, the knowledge gained in the class would be used. Moreover, the MATLAB 

build-in function - ‘fmincon’ will be utilized to solve this optimization problem. 

4.2 Nomenclature 

1)  𝑔, Gear ratio  

2)  𝜂 [%], Efficiency of the motor 

3)  𝑀𝑒 [mNm], Torque after gear  

4)  𝜃́𝑒 [rad/s], Velocity after gear 

5)  𝑀 [mNm], Motor torques 

6)  𝜃́ [rad/s], Motor velocity 

7)  𝜃́ [rad/s
2
], Motor acceleration 

8)  I [mA], Current 

9)  U [V], Voltage 

10)  𝐾𝑚 [mNm/A], Torque constant 

11)  𝐾𝑛 [rpm/V], Speed constant 

12)  𝐼𝑚𝑎𝑥 [A], Nominal current (This is the maximum continuous current for each motor) 

13)  𝐼0 [A], No load current 

14)  𝑀𝑚𝑎𝑥 [mNm], Nominal torque (This is the maximum continuous torque for each motor) 



15) 𝑛𝑚𝑎𝑥 [rpm], Maximum speed of the motor 

16)  𝐽 [gcm
2
], Rotor Inertia  

17)  𝑅 [Ω], Terminal resistance 

18)  P [W], Power 

 

4.3 Mathematical Models 

For a fixed gait pattern, the function for this subsystem should run the torque/velocity after gear 

for each motor and output the gear ratios which minimize the total electrical power. The 

constraints come from the mechanical and thermal limits for the specific motor model. Those 

gear ratios will be what the optimizer changes. 

Objective function 

The gear ratio is defined as the input speed relative to the output speed (or output torque to the 

input torque):  

𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡 

𝑀𝑚 ∙ 𝜃̇𝑚 = 𝑀𝑒 ∙ 𝜃̇𝑒 

𝑀𝑒

𝑀𝑚
=

𝜃̇𝑚

𝜃̇𝑒

=  𝑔 (𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜) 

To derive the expression of objective function, let’s start from the power balance equation for the 

motor system. The electrical motor convert electrical power 𝑃𝑒𝑙 (current 𝐼𝑚𝑜𝑡 and voltage 𝑈𝑚𝑜𝑡) 

into mechanical power 𝑃𝑚𝑒𝑐ℎ (speed n and torque M). The losses that arise are divided into 

frictional losses, attributable to 𝑃𝑚𝑒𝑐ℎ and in Joule power losses 𝑃𝐽 of the winding (resistance R). 

The power balance can therefore be formulated as:  

𝑃𝑒𝑙 = 𝑃𝑚𝑒𝑐ℎ + 𝑃𝐽 

where 

𝑃𝑒𝑙 = 𝑈 ∙ 𝐼 

𝑃𝑚𝑒𝑐ℎ =
𝜋

30,000
𝑀 ∙ 𝜃̇ 



𝑃𝐽 = 𝑅 ∙ 𝐼𝑚𝑜𝑡
2 

Here, both current and voltage are functions of torque and speed, the relations are given as: 

𝐼 =
𝑀 + 𝜃̈ ∙ 𝐽

𝐾𝑚
 

𝑈 = 𝐼 ∙ 𝑅 +
𝜃̇

𝐾𝑛
 

Where 𝐾𝑚 is the torque constant, 𝐾𝑛 is the speed constant, 𝐽 is the rotor inertia and 𝑅 is the 

resistance. The acceleration term can be estimated using finite difference method. Also applying 

the gear ratio on the motor velocities and torques: 

𝑀 =
𝑀𝑒

𝑔
 

𝜃̇ = 𝑔𝜃̇𝑒 

𝜃̈ =
𝑑𝜃̇

𝑑𝑡
= 𝑔

𝑑𝜃̇𝑒

𝑑𝑡
= 𝑔

𝜃̇𝑒,𝑖−1 − 2𝜃̇𝑒,𝑖 + 𝜃̇𝑒,𝑖+1

(𝑑𝑡)2
 

Combine all the relations above, the equation can be rewritten as: 

𝑃 = (𝐼 ∙ 𝑅 +
𝜃̇

𝐾𝑛
) ∙ (

𝑀 + 𝜃̈ ∙ 𝐽

𝐾𝑚
) 

𝑃𝑒𝑙 = (
𝑀 + 𝜃̈ ∙ 𝐽

𝐾𝑚
∙ 𝑅 +

𝜃̇

𝐾𝑛
) ∙

(
𝑀𝑒

𝑔 +
𝑑𝜃̇
𝑑𝑡

∙ 𝐽)

𝐾𝑚
 

𝑃𝑒𝑙 = (

𝑀𝑒

𝑔 +
𝑑𝜃̇
𝑑𝑡

∙ 𝐽

𝐾𝑚
∙ 𝑅 +

𝑔𝜃̇𝑒

𝐾𝑛
) ∙

(
𝑀𝑒

𝑔 +
𝑑𝜃̇
𝑑𝑡

∙ 𝐽)

𝐾𝑚
 

𝑃𝑒𝑙 = (
𝑀𝑒𝑅

𝑔𝐾𝑚
+ 𝑔

𝑑𝜃̇𝑒

𝑑𝑡
∙

𝐽𝑅

𝐾𝑚
+ 𝑔

𝜃̇𝑒

𝐾𝑛
) ∙ (

𝑀𝑒

𝑔𝐾𝑚
+ 𝑔

𝑑𝜃̇𝑒

𝑑𝑡
∙

𝐽

𝐾𝑚
) 

𝑃𝑒𝑙 =
𝑑𝜃̇𝑒

𝑑𝑡
∙ (

𝑑𝜃̇𝑒

𝑑𝑡
∙

𝐽2𝑅

𝐾𝑚
2 +

𝐽𝜃̇𝑒

𝐾𝑛𝑎𝑚
) ∙ 𝑔2 +

𝑀𝑒
2𝑅

𝐾𝑚
2 ∙

1

𝑔2
+

𝑀𝑒

𝐾𝑚
∙ (2

𝑑𝜃̇𝑒

𝑑𝑡
∙

𝐽𝑅

𝐾𝑚
+

𝜃̇𝑒

𝐾𝑛
) 



This is the expression of electrical power at a given time step (a given torque and velocity). Since 

the torque and velocity will change within the gait pattern, and the gear ratio is constant during 

the process, the total power should be the sum of the input power calculated at each time step for 

all three motors, which is: 

𝑃𝑒𝑙 = ∑(𝑃𝑒𝑙,1 + 𝑃𝑒𝑙,2 + 𝑃𝑒𝑙,3) 

Where the index 1,2,3 represent three motors. This the final expression of objective function. In 

summary, the goal is to minimize the input electrical power by choosing the best gear ratios 

under a given gait pattern and geometry. The mathematic expression is: 

Objective function: 𝑚𝑖𝑛𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 (𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟) 

Electrical Power = function (gear ratio, torque and velocity from gait pattern) 

 

Constraints  

Table 2.3.3.2.1: Detailed Motor Information 

Motor Data 

Nominal voltage                               36 V 

No load speed                                4550 rpm 

No load current  176 mA 

Nominal speed  3950 rpm 

Nominal torque (max. continuous torque)  217 mNm 

Nominal current (max. continuous current)   2.84 A 

Stall torque  3520 mNm 

Stall current  46.9 A 

Max. efficiency  88 % 

Characteristics 

Terminal resistance phase to phase 0.767 Ω 

Terminal inductance phase to phase 0.675 mH 

Torque constant 74.9 mNm/A 

Speed constant 127 Rpm/V 

Speed/torque gradient 1.31 Rpm/mNm 

Mechanical time constant 0.601 ms 

Rotor inertia 44 gcm
2 

Specifications 

Thermal resistance housing-ambient 7.17 K/W 

Thermal resistance winding-housing 1.35 K/W 

Thermal time constant winding 23.1 s 

Thermal time constant motor 1400 s 



Ambient temperature -40 ~ +100 ℃ 

Max. winding temperature +155 ℃ 

Max. speed 8000 rpm 

 

 

Figure 2.3.3.2.1: Operating Range of the Selected Motor 

Based on the table and graph, to ensure the motor run in continuous operating range (the red 

region), these conditions should be satisfied: 

1) The speed of each motor should be smaller than Max. speed  𝑛𝑚𝑎𝑥 

0 ≤ 𝜃́1 ≤ 𝑛𝑚𝑎𝑥[𝑟𝑝𝑚] 

0 ≤ 𝜃́2 ≤ 𝑛𝑚𝑎𝑥[𝑟𝑝𝑚] 

0 ≤ 𝜃́3 ≤ 𝑛𝑚𝑎𝑥[𝑟𝑝𝑚] 

2) The torque for each motor should be smaller than the max. continuous torque 𝑀𝑚𝑎𝑥 

0 ≤ 𝑀1 ≤ 𝑀𝑚𝑎𝑥[𝑚𝑁𝑚] 

0 ≤ 𝑀2 ≤ 𝑀𝑚𝑎𝑥[𝑚𝑁𝑚] 

0 ≤ 𝑀3 ≤ 𝑀𝑚𝑎𝑥[𝑚𝑁𝑚] 

3) As we can see, the max. continuous torque is not a straight line and the value varies with 

different motor speeds. The reason is that the motor is restricted by some thermal limitations. 

The Joule power losses heat up the winding, the heating produced must be able to dissipate and 

the maximum rotor temperature should not be exceeded.  



𝑇𝑤 − 𝑇𝑈 = ∆𝑇𝑤 = (𝑅𝑡ℎ1 + 𝑅𝑡ℎ2) ∙ 𝑃𝐽 ≤ 𝑀𝑎𝑥. 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

This results in a maximum continuous current (torque), at which the maximum winding 

temperature is attained under standard condition. Higher motor currents cause excessive winding 

temperatures. With EC motors, eddy current losses increase in the return as speed increases and 

produce additional heat. Thus the maximum permissible continuous current (torque) decreases at 

faster speeds accordingly.  

The relation is provided by manufacturer and not easy to calculate by hands, thus some 

approximations are used here. By observation, the curve has a parabolic shape, thus if knowing 

the coordinates of three points on that curve, the corresponding equation can be derived. Here, 

the three points are chosen randomly based on the graph:  

point 1= (108,8000) 

point 2 = (145, 6450) 

point 3 = (217,0) 

and use the second order ‘polyfit’ function in MATLAB, the equation becomes: 

n = -0.4375 M
2
+68.8048 M+5672.5080, when 108 ≤ 𝑀 ≤ 217 

Apply the gear ratio, simplify the equation: 

𝑔𝜃́𝑒 ≤ −0.4375 (
𝑀𝑒

𝑔
)

2

+ 68.8048
𝑀𝑒

𝑔
+ 5672.5080, when 108 ≤

𝑀𝑒

𝑔
≤ 217 

𝑀𝑒

𝑔
≤

−68.8048 − √68.80482 − 4 ∗ (−0.4375) ∗ (5672.5080 − 𝑔𝜃́𝑒)

2 ∗ (−0.4375)
 

14660.9895 − 1.75𝑔𝜃́𝑒

𝑀𝑒

𝑔
≤

68.8048 + √14660.9895 − 1.75𝑔𝜃́𝑒

0.875

 



 

Figure 2.3.3.2.2: Operating ranges plotted in MATLAB 

The figure above shows how the region looks like in MATLAB. Compare with the original 

graph, this estimate is good enough. Considering the gear ratio, the constraints for this problem 

will become: 

1) −𝑔 ≤ 0 

2) 𝑔𝜃́𝑒 ≤ 𝑛𝑚𝑎𝑥 

3) 
𝑀𝑒

𝑔
≤

68.8048+√14660.9895−1.75𝑔𝜃́𝑒

0.875
 

 

Design variables and parameters 

Table 2.3.3.3.1: Sample Torques and Velocities Input from gait pattern 

T [s] 0.0077 0.0155 … 

𝑀𝑒,1 [Nm] 0.1550 0.9049 … 

𝑀𝑒,2 [Nm] 0.0071 -2.2971 … 

𝑀𝑒,3 [Nm] 0.2321 -0.3686 … 

𝜃́𝑒,1 [rad/s] 0.8498 2.9000 … 

𝜃́𝑒,2 [rad/s] -0.0996 -0.9923 … 

𝜃́𝑒,3 [rad/s] 1.4761 2.8117 … 

 

 



Table 2.3.3.3.2: Parameter Values for the selected Motor  

Name Symbol Value 

Rotor Inertia J 44 gcm
2 

Torque Constant Km 74.9 mNm/A 

Speed Constant Kn 127 rpm/V 

Resistance R 0.767 Ω 

Max. Speed 𝑛𝑚𝑎𝑥 8000 rpm 

Max. continuous Torque 𝑀𝑚𝑎𝑥 217 mNm 

 

The design variables for this subsystem are the gear ratio 𝑔́  for each motor (g1, g2, g3). Torque 

𝑀𝑒 and velocity 𝜃́𝑒 will be loaded as the input, they are 3xN matrices from the gait pattern and 

the time for this motion will also be provided. The parameters for the motor are the rotor inertia 

𝐽, torque constant Km, speed constant Kn, resistance R, maximum continuous torque 𝑀𝑚𝑎𝑥 and 

the maximum speed 𝑛𝑚𝑎𝑥. 

 

Summary Model 

For a fixed gait pattern, the function for this subsystem is to run the torque/velocity after gear 

and output the gear ratio which minimize the total electrical power. Those gear ratios will be 

what the optimizer changes. The constraints come from the mechanical and thermal limits for the 

specific motor model.  

Objective function: 

Min: Total Input Power = function (g1, g2, g3) 

𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑃𝑒𝑙,1 + 𝑃𝑒𝑙,2 + 𝑃𝑒𝑙,3)

𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛

 

where 𝑃𝑒𝑙,𝑡 =
𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙ (

𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙

𝐽2𝑅

𝐾𝑚
2 +

𝐽𝜃́𝑒,𝑡

𝐾𝑛𝐾𝑚
) ∙ 𝑔2 +

𝑀𝑒,𝑡
2𝑅

𝐾𝑚
2 ∙

1

𝑔2 +
𝑀𝑒,𝑡

𝐾𝑚
∙ (2 ∙

𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙

𝐽𝑅

𝐾𝑚
+

𝜃́𝑒,𝑡

𝐾𝑛
) 

 

 



Constraints: 

1) −𝑔 ≤ 0 

2) 𝑔𝜃́𝑒,𝑖 ≤ 8000 

3) 
𝑀𝑒,𝑖

𝑔
≤

68.8048+√14660.9895−1.75𝑔𝜃́𝑒,𝑖

0.875
 

 

2.3.4 Model Analysis 

Base on the graph of operating range (constraint region), this problem is obviously bounded and 

will have an optimal result in that well-bounded region. By observation, the gear ratios for three 

motors are independent to each other, thus it can be solved one by one. For each motor, let’s use 

a KKT condition to find the optimal analytical solution.  

 

KKT Conditions: 

𝑃𝑒𝑙,𝑡 =
𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙ (

𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙

𝐽2𝑅

𝐾𝑚
2 +

𝐽𝜃́𝑒,𝑡

𝐾𝑛𝐾𝑚
) ∙ 𝑔2 +

𝑀𝑒,𝑡
2𝑅

𝐾𝑚
2 ∙

1

𝑔2
+

𝑀𝑒,𝑡

𝐾𝑚
∙ (2

𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙

𝐽𝑅

𝐾𝑚
+

𝜃́𝑒,𝑡

𝐾𝑛
) 

Let’s define: 

𝐴𝑡 =
𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙ (

𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙

𝐽2𝑅

𝐾𝑚
2 +

𝐽𝜃́𝑒,𝑡

𝐾𝑛𝐾𝑚
) 

𝐵𝑡 =
𝑀𝑒,𝑡

2𝑅

𝐾𝑚
2  

𝐶𝑡 =
𝑀𝑒,𝑡

𝐾𝑚
∙ (2

𝑑𝜃́𝑒,𝑡

𝑑𝑡
∙

𝐽𝑅

𝐾𝑚
+

𝜃́𝑒,𝑡

𝐾𝑛
) 

then  

𝑃𝑒𝑙,𝑡 = 𝐴𝑡 ∙ 𝑔2 + 𝐵𝑡 ∙
1

𝑔2
+ 𝐶𝑡 

𝑃𝑒𝑙,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑒𝑙,𝑡 = ∑ 𝐴𝑡 ∙ 𝑔2 + ∑ 𝐵𝑡 ∙
1

𝑔2
+ ∑ 𝐶𝑡 



To simplify the problem, the third constraint will be replaced by a straight line instead of the 

quadratic curve.  

𝑀𝑒,𝑖

𝑔
≤ −0.013625 ∙ 𝑔𝜃́𝑒,𝑖 + 217 

 

Figure 2.3.4.1: Simplified Constraint Region 

Besides, the second constraint can be rewritten as: 

𝑔𝜃̇𝑒,𝑚𝑎𝑥 ≤ 8000 

The Lagrangian becomes: 

𝐿 = ∑ 𝐴𝑡 ∙ 𝑔2 + ∑ 𝐵𝑡 ∙
1

𝑔2
+ ∑ 𝐶𝑡 + 𝜇1(−𝑔) + 𝜇2(𝑔𝜃̇𝑒,𝑚𝑎𝑥 − 8000)

+ ∑ 𝜇𝑡 (
𝑀𝑒,𝑡

𝑔
+ 0.013625 ∙ 𝑔𝜃̇𝑒,𝑡 − 217) 

Then the KKT condition is: 

𝜕𝐿𝑡

𝜕𝑔
= 2 ∑ 𝐴𝑡 ∙ 𝑔 − 2 ∑ 𝐵𝑡 ∙

1

𝑔3
− 𝜇1 + 𝜇2𝜃̇𝑒,𝑚𝑎𝑥 + ∑ 𝜇𝑡 (−

𝑀𝑒,𝑡

𝑔2
+ 0.013625 ∙ 𝜃̇𝑒,𝑡) = 0 

𝜇1 ≥ 0,  𝜇2 ≥ 0,  𝜇𝑡 ≥ 0 

𝜇1 ∙ (−𝑔) = 0 

𝜇2 ∙ (𝑔𝜃̇𝑒,𝑚𝑎𝑥 − 8000) = 0 

𝜇𝑡 ∙ (
𝑀𝑒,𝑡

𝑔
+ 0.013625 ∙ 𝑔𝜃̇𝑒,𝑡 − 217) = 0 



Since the gear ratio should be positive in practice , the first constraint will not be active, which 

means 𝜇1 = 0; Define 𝐷1 = ∑ 𝐴𝑡, 𝐷2 = ∑ 𝐵𝑡, the equation can be simplified as: 

2𝐷1 ∙ 𝑔4 − 2𝐷2 + (𝜇2 ∙ 𝜃̇𝑒,𝑚𝑎𝑥) ∙ 𝑔3 + ∑ 𝜇𝑡(−𝑀𝑒,𝑡𝑔 + 0.013625 ∙ 𝑔3𝜃̇𝑒,𝑡) =0 

Thus, 

2𝐷1 ∙ 𝑔4 + (𝜇2 ∙ 𝜃̇𝑒,𝑚𝑎𝑥 + 0.013625 ∑ 𝜇𝑡𝜃̇𝑒,𝑡) ∙ 𝑔3 + ∑ 𝜇𝑡(−𝑀𝑒,𝑡)𝑔 = 2𝐷2 

𝜇2 ∙ (𝑔𝜃̇𝑒,𝑚𝑎𝑥 − 8000) = 0 

𝜇𝑡 ∙ (
𝑀𝑒,𝑡

𝑔
+ 0.013625 ∙ 𝑔𝜃̇𝑒,𝑡 − 217) = 0 

𝜇2 ≥ 0,  𝜇𝑡 ≥ 0 

where  

𝐷1 = ∑ 𝐴𝑡 = ∑
𝑑𝜃̇𝑒,𝑡

𝑑𝑡
∙ (

𝑑𝜃̇𝑒,𝑡

𝑑𝑡
∙

𝐽2𝑅

𝐾𝑚
2 +

𝐽𝜃̇𝑒,𝑡

𝐾𝑛𝐾𝑚
) 

𝐷2 = ∑ 𝐵𝑡 = ∑
𝑀𝑒,𝑡

2𝑅

𝐾𝑚
2  

The analytical equation is difficult to solve here, the value will be calculated in MATLAB with 

some root finding methods and will compare with the results coming from ‘fmincon’. 

 

2.3.5 Optimization Study and Discussions 

Matlab function ‘fmincon’ are used to implement the optimization for this problem. The main 

file for this subsystem will initialize parameters and functions to optimize. Then it will call the 

optimization tool (fmincon) and finally plot the results. The optimized results from this 

subsystem will be used to improve the whole performance of the robot.  

 

The initialization includes the detailed information about the motor, the torque and velocity from 

the gait pattern and the corresponding moving time. All the values are read into MATLAB. In 



‘fmincon’, the ‘active-set’ algorithm are used, the tolerance of the function is 1e-5, the maximum 

iteration number is 10,000, the maximum function evaluation is 10,000. After running the 

optimization, the active constraints can be found from ‘active-set’ algorithm, and with that 

information, the KKT conditions is simplified and solved. Here is a test result from ‘fmincon’, 

the input torque and velocity are some real data from earlier experiment (see in Appendix).  

Table 2.3.5.1: Results from fmincon 

 Initial guess Gear ratio Fval Iteration Number 

Motor 1 10 9.8020 9.7473 4 

Motor 2 10 17.3499 6.7784 7 

Motor 3 10 6.0229 3.9252 9 

 

  

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

time

0

0.1

0.2

0.3

0.4

0.5

0.6

P
o

w
e
r

Mechanical Power
Electrical Power

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e
ff
ic

ie
n

c
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

time

0

0.05

0.1

0.15

0.2

0.25

0.3

P
o

w
e
r

Mechanical Power
Electrical Power

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e
ff
ic

ie
n

c
y



 

Figure 2.3.5.1: Mechanical and Electrical Power versus Time and Efficiency versus Time 

The total length of test data is N=57. From the table, it can be found that ‘fmincon’ reached some 

optimal values within a small number of iterations. The gear ratios are all positive and larger 

than one which is true in reality. Also, the mechanical and electrical power are plotted on the 

same figure. As can be seen, the efficiency = mechanical / electrical power is always smaller 

than 1, which make sense. Based on ‘fmincon’ result, all the inequality constraints are inactive, 

which means all the 𝜇𝑡 are zero, thus the KKT is simplified as:  

𝐷1 ∙ 𝑔4 = 𝐷2 

𝑔 = √
𝐷2

𝐷1

4

 

Table 2.3.5.2: Comparison of fmincon and KKT condition results 

 fmincon KKT Conditions 

 Gear ratio Power (W) Gear ratio Power (W) 

Motor 1 9.8020 9.7473 9.8020 9.7473 

Motor 2 17.3499 6.7784 17.3502 6.7784 

Motor 3 6.0229 3.9252 6.0229 3.9252 

Total:  20.4509  20.4509 
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Then the solution from KKT conditions can be calculated and values are given here. As can be 

seen, MATLAB fmincon gave the same answer as KKT conditions, which validates the previous 

optimization results. Note that here the input are some test data, the values can be changed in the 

future and the constraints are not always inactive. Once getting some active constraints, the 𝜇𝑡 

for the those active constraints should have some positive values. In this case, the KKT condition 

will become more complex. The g value can be then calculated using the ‘root’ function in 

MATLAB. In conclusion, the motor optimization model works well in this subsystem. 

  



5 Subsystem – Gait Pattern Generation (Hope Yao and Nathan) 
5.1 Problem Statement 

     The goal of this subsystem is to find an ideal gait pattern that is both stable and minimizes the power 

expenditure of the actuators. We have defined the dynamic equations of motion for a simplified version of 

the robot. We will simulate the robot’s dynamic motion using a simulator created in Matlab’s Simulink 

program. This simulated robot can be commanded with a gait pattern defined by several continuously 

adjustable parameters. Using this gait pattern and some initial conditions the simulation can be run and 

the state information of the robot can be extracted across the span of a step. This state information is used 

to assess the stability of the robot at the end of its step. The stability of the robot is a constraint of the 

optimization problem. The power output of the gait pattern may also be extracted from the results of the 

dynamic simulation, this will be the function we minimize with our optimization routine.   

5.2 Nomenclature: 

A “gait pattern” is defined in this paper as a set of curves that define the way a walking robot or animal 

will move during a single cycle of its gait. These curves include the positions of the leg, and forces 

required during gait.  

Gait percent is a parameter that varies linearly with time from 0 to 100% and repeats. 

 The length of time taken to reach 100 percent is the “step time”. With step time defined the velocity of 

the leg can also be defined from the gait pattern.  

5.3 Mathematical Model 

      For this project it is very important to simplify 

the problem as much as possible. In order to do this, 

the robot has been simplified to a 2d model. The 

model consists of a body and two legs. Furthermore 

the degrees of freedom of each leg have been 

reduced down to 2: a length and an angle. Figure 1 

shows a visualization of the simplified model. This 

model was built in a dynamic simulator created by 

SpringActive inc. After the dynamic equations were 

generated and plugged into the model, the next task 

was to select a method to parameterize the gait.  

 

Figure 1: Simplified robot model 



 

 

 

Objective Function 

     The optimization routine attempts to minimize actuator power while a tune parameters that define a 

robot’s gait cycle (See section entitled: “Modeling the System”). Every time the objective function is 

called the dynamic simulator runs through the robot’s gait cycle once, starting at a given initial robot 

state. The dynamic simulator outputs the robot’s state information and the simplified actuator forces 

required to achieve the gait pattern. From the actuator forces the power output may be calculated. The 

objective is be to minimize this power. It should be noted that this assumes that there exists some gait 

pattern that allows stable steady state walking for the robot. In reality a more advanced walking control 

may be needed to keep a real robot balanced. These advanced walking controllers do not have a set 

pattern but some set of rules that balance the robot (see: zero moment point control for example). As 

stated above we are not using advanced walking control logic, but a simple, repeated, open-loop pattern. 

In the end, this approach was not suitable to converge to a truly stable gait pattern.  

Constraints 

     The main constraint for this subsystem is that the gait pattern selected needs to be a stable gait pattern. 

Stability, however, can be a tricky thing to assess in a walking robot. There are several ways to look at 

stability. The simplest way is to enforce some stability criteria upon every point of the gait cycle. This is 

how zero moment point controllers define stability (keeping the “zero moment point” inside the footprint 

of the robot at all times. By this definition, most biological gaits are not stable. A potentially better 

stability criteria would be cyclic stability. This looks at the stability of the gait cycle as a whole. One way 

to assess this is to see if the gait of the robot will converge to an exact repetition of a closed trajectory [1]. 

This means that a constraint for our robot could be that the state at the end of the step must be exactly the 

same as the state at the beginning.   

Design variables and parameters 

     The hip angle was modeled using a second order Fourier series. The hips was then forced to be 180 

degrees out of phase from each other. In all only 5 parameters are needed to fully define the hip pattern. 

The equation for this is as follows: 

𝜃 = 𝑋1𝑠𝑖𝑛(𝜃) + 𝑋2𝑐𝑜𝑠(𝜃) + 𝑋3𝑠𝑖𝑛(2𝜃) + 𝑋4𝑐𝑜𝑠(2𝜃) + 𝑋5 



Where 𝑋 is the array of parameters that the optimization tunes, and 𝜃 is a vector of length n that increases 

linearly from 0 to 2π. The length n for our study was 100 which was a sufficient number of data points to 

create a lookup table for the open loop controller.  

     While using a Fourier series on the hip angle seemed to work very well using a Fourier series on the 

leg length produced a set of patterns that didn’t seem “gait-like” at least intuitively speaking. A 

parameterization was selected that allowed a long constant section in the beginning of the gait pattern, 

and then a second section that is a sum of sinewaves. This allows the leg to be a constant length while the 

foot is on the ground and then lifted up for the swing portion, while only using 4 more parameters.  See 

figures for an example gait pattern.  The exact equation for the leg length is as follows: 

𝜃 = 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(0,2𝜋, 𝑚) 

𝐺𝑃 = [0𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑋9, 100, 𝑎)]; 

        𝑙 = [1𝑋6𝑠𝑖𝑛(𝜃) + 𝑋7𝑠𝑖𝑛 (
𝜃

2
)] 𝑋8    

Where m is the number of data points in the swing portion of the curve, X is the parameter that the 

optimization tunes, 𝑙 is the length of the leg, and 𝐺𝑃is the gait percent.  After the gait pattern is generated 

with these equations, a spline function is used to smooth it out. This results in the gait patterns you see in 

the following figure.  

 

 

Figure 2:Example gait pattern 

 In addition to the parameters needed to generate the gait pattern, a one other parameter was made 

“tunable” for the optimization. This parameter was the “step time” which is the duration of time that 

passes during one step.  

5.4 Optimization Study 



     Initial attempts to find a stable, low power gait patterns used gradient methods such as fmincon. There 

was a problem with this kind of optimization routine because of the oscillatory nature of the system. 

Gradient information obtained from partial difference functions does not find a good search direction. 

Two methods were used to bypass this problem. One method forced the partial difference function to use 

a larger perturbation for the system. This allowed the gradient method to converge on a solution.  Another 

solution to this problem was using CMA-ES. This multi-start, non-gradient method searched a larger 

portion of the parameter space and found solutions with lower function values than the modified gradient 

method. Figure 3 shows an example of CMA-ES converging to a solution. The algorithm was able to 

reduce the objective function by an order of magnitude.  Several example gaits are attached in the form of 

animations.  It is difficult to quantify how “good” these gait patterns are or not, as there is not much to 

compare them to. They could be compared to human gait, but this kind of comparison has not been made 

for the purpose of this paper. In addition this makes the assumption that human gait is going to be an 

optimal solution to this problem. This is a bad assumption because human gait is optimized around the 

actuation system available to it: its muscular-skeleton system.  In the following section the results of a 

parametric study are presented, which give an idea of the solution space that is being explored here.  

5.5 Parametric Study 

     A parametric study has been completed on 

this subsystem. This study entails optimizing a 

cost function with various weighting between 

two or more conflicting goals.  In this case the 

goals are: one, the stability of the gait and, two, 

the efficiency of the gait. Figure 3 shows the 

Pareto curve.  This surface represents 

optimization cost function that is a sum of the 

two cost functions with weighting varied from a 

1 to 10 ratio to a 10 to 1 ratio. There are ten 

points in all. Each of which represents the output of CMA 

ES algorithm which runs a dynamic simulation hundreds or thousands of times. This kind of study is very 

time and processing intensive. In the future it could be useful to add more points to this curve but the 

general shape is pretty obvious. Also, a video is included that shows the corresponding gait of all of these 

10 points on the surface. The videos are in order from most stable to most power efficient.  

5.6 Discussion of Results 

Figure 3: Pareto Curve 



      This subsystem ended up being the most challenging subsystem. The main obstacle to overcome arose 

when attempting to constrain the solutions to “stable gaits”. This is due in part because it is difficult to 

define “stable gait” mathematically. Many methods were attempted including minimizing change in 

kinetic and potential energy, minimizing change in center of mass height, and minimizing change of state 

throughout the gait cycle. All of these methods failed for various reasons including failure to converge at 

all, and converging to a low function value that did not represent a real gait. To give one specific example 

a problem with minimizing change in potential and kinetic energy is that during a free fall there is no net 

change in the sum of these energies, so the gait that was found was much more of a fall than a step. In the 

end it was comparing the change of initial and final state of the step that returned stable solutions 

consistently. In future research it may be desirable to develop a tunable control strategy that always 

results in stable gaits. This would reduce the number of iterations of an optimization routine dramatically 

by not having to iterate through unstable gait patterns.  

      Another limitation of this optimization study is in the choice of initial state of the robot. This choice 

was basically an arbitrary one, all the gait patterns selected are only stable given this initial state. The 

choice was made to use this simplification for a number of reasons.  A future goal is to find some efficient 

way to select an optimal gait pattern given an arbitrary state input. This will allow some kind of 

extrapolation of the results to a more general case. 

 

5.5 Passive dynamic walking (Hope Yao) 

In this part, I will investigates another simplified walking, namely passive dynamic walking. 

Numerical model 

Here passive dynamic walking is chosen as the problem to be optimized. Passive dynamic 

walking is a specific simplified walking scheme that models human walking down a slope. The structure 



of the robot is simplified into a linked chain and all masses are lumped to the gravity center of different 

parts of the leg. By passive it means that there is no control input to the system at all, the robot walk on its 

own merely based on gravity pull. There are two different walking state during one walking cycle. The 

first one is called 3-linked dynamics, which corresponds when the bipedal has three chains swinging at 

the point walking just started. The stance leg won’t bind at this state, so there only exists three swinging 

chains: no-stance thigh, non-stance thigh and stance leg. 3-linked chain state will evolving into 2-linked 

chain state after non-stance knee and non-stance thigh rotate to the same angle and impact. This is called 

knee strike event. After the knee strike event, the non-stance knee and non-stance thigh will bind together 

and rotate as whole. This is when the so called 2-lined dynamics starts. Because there is no control input, 

all potential energy is dispersed at the knee strike and heel strike event. 

 

Only three variable are needed to define the state of this model. Here I choose the orientation 

angle of different non-stance thigh, non-stance shank and stance leg as the state variables. Masses are 

lumped and the location of them are also design variables. The swing state is governed by non-linear 

second order structure dynamics and the impact event could be described by momentum conservation. 

Detailed formula could be find in [].  

 

Integration block in Scipy package is used here to simulate this problem. 



Optimization  

There are two objective functions, the first one is the speed of the robot and the second one is its 

stability. Speed of the bipedal is measured by the distance of one step cycle and the stability is measured 

by the difference of state variables at the beginning of a step cycle and the end of a step cycle. There are 

seven variables to be optimized. Three for initial state and four for the location of lumped mass. The 

initial state variables could be viewed as control variables while the mass location could be viewed as 

structure variables. So both design and control variables are going to be optimized. Constrains here are set 

as q1 in (0.15, 0.2), q2 in (-0.3,-0.2), q3 in (-0.3, 0.2), a1 and b2 in (0.2, 0.4), a2 and b1 in (0.1, 0.26). 

Besides, there are extra constrains on the total length of the leg, it is set in the range of (0.9, 1).  

Optimization block in Scipy package is used here. More specifically, L-BFGS-B method is used 

to find the minimum solution.  

Results and discussions 

 Following figure is a screen shot of the bipedal animation. The first subplot is the periodic orbit in 

state space. Three different lines stands for three different state variables. It is obvious from the figure 

that, after some steps, the orbit is approaching a limit cycle.  

 

 

 The Pareto surface of the two objectives are shown in bellow. X axis is the stability, which is the 

reciprocal of the difference between start and end state of a walking cycle. Y axis is the speed. It is 

strange that the points are not strictly monotonous decreasing as it should be in theoretical. The reason I 

think might be the nonlinearity of the passive dynamic walking. It is very difficult to converge to global 

optimum using the gradient based method for this kind of highly non-linear system (especially with 



gradient approximation using finite difference). I’m still working on combining global search method like 

CMA-ES with this simulator and hopefully it will get better result. 

 

During the computation of Pareto surface, the optimizer ran a total of 13540 simulations. And all 

these simulation results have been recorded. Hoping to find some structure in those data, T-SNE is further 

incorporated to visualize them. Following figure is a visualization for speed, darker color indicates higher 

speed. However, many points are so clustered together that they merged into single points after dimension 

reduction. Because the merge effect, not too much pattern could be find. I think better results could be 

obtained if global search algorithms like CMA-ES could be used to gather those data. 



 

 

Future directions 

Control signals could be added to the system very easily. If this system becomes controllable, I 

can use human walking data to make it walk in a bio-mimic way. Moreover, I can even do non-

parametric reinforcement learning on it for different terrains. 

 

6 System Integration  
For this project it is possible to integrate all of the optimization tools into one optimization routine. This is 

aided by the fact that each subsystem changes an independent set of parameters of the system. The tool 

would look something like this:  

Step 1: The gait pattern subsystem would select a candidate gait pattern and check whether it is 

stable.  

Step 2: The stable gait pattern would be sent to the geometry optimization. The geometry 

optimization would select a candidate geometry that satisfies the geometry constraints (R-

Conditioning number, and length bounds).  



Step 3: This candidate gait pattern and geometry set would then go through the stiffness optimization. 

This optimization would find the global best spring stiffness matrix using quadratic programming and 

then output a new, reduced force pattern for the motors.  

Step 4: This force pattern, along with the candidate geometry and gait pattern, would go to the gear 

ratio subsystem. The gear ratio subsystem would find the optimal gear ratio using the KKT 

conditions, and it would output the motor power. This motor power is the cost function for steps 1 

and 2.   

Repeat Steps 2-4 until the geometry subsystem has converged. Return result (motor power) to Step 1.  

This all in one method would take an incredibly long time to converge, despite the fact that steps 3 and 4 

are very fast with their quadratic programming and KKT conditions results. Another method for system 

integration could be a decomposition approach such as:  

Step 1: The gait pattern subsystem would use mechanical power (as opposed to electrical power) as 

its cost function and ignore the possible improvements from geometry, stiffness, and gear ratio while 

it is running.  

Step 2: The result of the gait pattern subsystem could be sent to the geometry optimization. The 

geometry optimization would ignore the possible benefits from springs and gear ratios and by using 

mechanical power (as opposed to electrical power) as its cost function.  

Step 3:  The result of the geometry and gait pattern optimization could then go through the stiffness 

optimization. This optimization would find the global best spring stiffness matrix using quadratic 

programming and then output a new, reduced force profile for the motor subsystem.  

Step 4: The results of all of the above optimization routines (gait pattern, geometry and updated force 

profile.), would then go to the gear ratio subsystem. The gear ratio subsystem would find the optimal 

gear ratio using the KKT conditions, and it would output the motor power. This motor power is the 

cost function for steps 1 and 2.   

    This approach would be much more efficient but it may ignore any synergistic effects that might be 

present in the AIO method. These synergistic effects result from running the optimizations in parallel. For 

example, some gait patterns may be more “optimizable” than others for the geometry, compliance, gear 

ratio subsystems. Similarly some geometries may gain more benefit than others from the spring and gear 

ratio subsystems.  In future work either of these system level optimization approaches could be used to 

further optimize the design of the leg.  
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8. APPENDIX, KINEMATIC SOLUTION FOR THE LEG 

MECHANISM  
Spring Optimization Mathematical Model Derivations 

Equation Derivation: Comments: Eq.#: 

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠 + 𝐹𝑚𝑜𝑡𝑜𝑟𝑠 Total force at the end effector is 

composed of the force harnessed by the 

springs and force generated by the motor  

(1) 

𝐹𝑚𝑜𝑡𝑜𝑟𝑠 = 𝐹𝑡𝑜𝑡𝑎𝑙,𝑚𝑜𝑡𝑜𝑟 − 𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠,𝑚𝑜𝑡𝑜𝑟 Eventually we’ll want to obtain the 

Power of the motors and thus we’ll need 

to rewrite the equation in respect to the 

motors coordinate system 

(2) 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠,𝑗𝑜𝑖𝑛𝑡 = −𝐾(𝜃 − 𝛽) = 𝐾𝛽 − 𝐾𝜃 Offset angle (𝛽) will be considered, and 

is subject to change. Note that spring 

force is current in the joints coordinate 

system 

(3) 

𝜃 = [

𝜃1

𝜃2

𝜃3

] = [
𝜃1

𝜃3
] 

Gait pattern shows no abduction and 

adduction at the hip joint and thus 𝜃1can 

be set to zero 

(4) 

𝛽 = [

𝛽1

𝛽2

𝛽3

] = [
𝛽1

𝛽3
] 

Gait pattern shows no abduction and 

adduction at the hip joint and thus 𝛽2can 

(5) 



be set to zero 

𝐾 = [

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

] = [
𝑘11 𝑘13

𝑘13 𝑘33
] 

Associated hip abduction/adduction 

springs with can be disregarded since 

𝜃2 = 0. Note that 𝐾 is a symmetric 

matrix, and thus 𝑘13 = 𝑘31  

(6) 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠,𝑎𝑛𝑘𝑙𝑒 = 𝐽𝑙𝑒𝑔
𝑇 (𝐾𝛽 − 𝐾𝜃)

= 𝐽𝑙𝑒𝑔
𝑇 𝐾𝛽 − 𝐽𝑙𝑒𝑔

𝑇 𝐾𝜃 

First, we are going to map the sprig force 

to the end effector coordinate system, so 

that we can couple it with the end effector 

velocity (𝑉𝑡𝑜𝑡𝑎𝑙,𝑎𝑛𝑘𝑙𝑒), which is 

empirically provided from the gait pattern 

(7) 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠,𝑎𝑛𝑘𝑙𝑒

= 𝐽𝑙𝑒𝑔
𝑇 ∗ 𝐾𝛽 − [𝐽𝑙𝑒𝑔

𝑇 𝜃1 𝐽𝑙𝑒𝑔
𝑇 𝜃3] ∗ 𝑣𝑒𝑐(𝐾)

= 𝐽𝑙𝑒𝑔
𝑇 ∗ 𝐾𝛽 − 𝐴𝑡 ∗ 𝑣𝑒𝑐(𝐾)

= [𝐽𝑙𝑒𝑔
𝑇 𝐽𝑙𝑒𝑔

𝑇 𝜃1 𝐽𝑙𝑒𝑔
𝑇 𝜃3] [

𝐾𝛽

−𝑣𝑒𝑐(𝐾)
] = 𝐴𝑥   

Utilizing matrix manipulation, we are 

able to decuple the variables from the 

parameters by setting 

𝐴 = [𝐽𝑙𝑒𝑔
𝑇 𝐽𝑙𝑒𝑔

𝑇 𝜃1 𝐽𝑙𝑒𝑔
𝑇 𝜃3] and 𝑥 = 

[𝐾𝛽 𝑣𝑒𝑐(𝐾)]𝑇, where 𝑣𝑒𝑐(𝐾) is the 

vectorization of the 𝐾matrix 

(8) 

𝐹𝑚𝑜𝑡𝑜𝑟𝑠,𝑎𝑛𝑘𝑙𝑒 = 𝐹𝑡𝑜𝑡𝑎𝑙,𝑎𝑛𝑘𝑙𝑒 − 𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝑠,𝑎𝑛𝑘𝑙𝑒

= 𝐵 − 𝐴𝑥  

End effector force (at the ankle) is 

empirical provided by the gait pattern and 

is denoted as 𝐵 here 

(9) 

 

𝐹𝑚𝑜𝑡𝑜𝑟𝑠 = (𝐽𝑇)−1𝐹𝑚𝑜𝑡𝑜𝑟𝑠,𝑎𝑛𝑘𝑙𝑒

= (𝐽𝑇)−1(𝐵 − 𝐴𝑥)

= (𝐽𝑇)−1𝐵 − (𝐽𝑇)−1𝐴𝑥

= 𝐵𝑚 − 𝐴𝑚𝑥 

We now can map the coordinate system 

from the end effector to the motor 

coordinate system, where 𝐵 and 𝐴 are 

now in motor coordinates, 𝐵𝑚 and 𝐴𝑚 

(10) 

𝑉𝑚𝑜𝑡𝑜𝑟𝑠 = (𝐽𝑇)−1𝑉𝑡𝑜𝑡𝑎𝑙,𝑎𝑛𝑘𝑙𝑒 = 𝐶𝑚 We denote motor velocity as 𝐶𝑚 (11) 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = 𝐹𝑚𝑜𝑡𝑜𝑟𝑠
𝑇 ∙ 𝑉𝑚𝑜𝑡𝑜𝑟𝑠

= (𝐵𝑚 − 𝐴𝑚𝑥)𝑇𝐶𝑚 

Now we can calculate for the motor 

power 

(12) 



𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = 𝑑𝑖𝑎𝑔(𝐶𝑚) ∗ (𝐵𝑚 − 𝐴𝑚𝑥)

= 𝐶𝑚𝑑 ∗ (𝐵𝑚 − 𝐴𝑚𝑥)

= 𝐶𝑚𝑑𝐵𝑚 − 𝐶𝑚𝑑𝐴𝑚𝑥 

We can rewrite power calculation in the 

following manner, where 𝑑𝑖𝑎𝑔(𝐶𝑚) is 

the diagonal of vector 𝐶𝑚   

(13) 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠
2 = (𝐶𝑚𝑑𝐵𝑚 − 𝐶𝑚𝑑𝐴𝑚𝑥)𝑇(𝐶𝑚𝑑𝐵𝑚

− 𝐶𝑚𝑑𝐴𝑚𝑥)

= (𝐵𝑚
𝑇 𝐶𝑚𝑑

− 𝑥𝑇𝐴𝑚
𝑇 𝐶𝑚𝑑)(𝐶𝑚𝑑𝐵𝑚

− 𝐶𝑚𝑑𝐴𝑚𝑥)

= 𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐵𝑚 − 𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚𝑥

− 𝑥𝑇𝐴𝑚
𝑇 𝐶𝑚𝑑

2 𝐵𝑚

+ 𝑥𝑇𝐴𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚𝑥

=
1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 + 𝑐 

In order to consider the influence of the 

total force (𝐵𝑚), we’ll take the power 

squared and get it the form of a quadratic: 

1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 + 𝑐, where 𝐻 =

2𝐴𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚, 𝑓 = −2𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐴𝑚, and 

𝑐 = 𝐵𝑚
𝑇 𝐶𝑚𝑑

2 𝐵𝑚 

(14) 

 



The first step taken towards designing this specialized mechanical limb was selecting the 

structure of the system. We chose to start with a biologically inspired three segment leg with four 

degrees of freedom (DOF). The joints include a two DOF hip, and a one DOF knee and one DOF 

ankle (see Figure 6). Figure 4 is an annotated sketch of a side view of a simplified version of the 

leg. It also includes the angles used to define the position of the leg. This figure only shows a 

planar simplification of the system and does not show hip abduction/adduction.  Figure 6 shows 

the spatial leg mechanism, but a planar version of the mechanism is evaluated first.  

 

 

 

Figure 4. Simplified Planar Serial Leg Structure 

 

 

This leg structure is often actuated in serial by placing one actuator across each DOF. This 

means that the heavy actuators are fixed to the leg segments that they actuate, which adds to the 

inertial losses in the system.  This problem is compounded by the fact that the only parameters to 

adjust in an attempt to optimize this system are the length of the leg segments and the actuators 

themselves. Our approach allows more flexibility to reduce inertia and place the actuators on the 



body. We actuate the joints of the leg with motor driven two-link RSS mechanisms which are 

attached between the body and each leg segment. The R joints of these linkages are fixed to the 

body through small motors which are used to control the leg. This removes from the leg the 

motor mass, thereby decreasing the inertial cost of tasks which involve rapidly swinging the 

mass of the limb back and forth.   Figure 4 is an example of a planar version of the mechanism 

with two motor linkages attached. The red and blue arrows marked τ1 and τ2 represent torques 

applied by each motor. The dotted red and blue arrows represent the torque that each joint would 

have to produce to provide a force at the end effector equivalent to what would be produced by τ1 

and τ2. If a serial chain system was designed, a larger motor and torque would be needed at the 

hip as compared to the parallel actuation. 

 

Figure 5. Annotated Drawing of the Planar Leg Structure with Parallel Actuators. 

The actual leg is not a planar mechanism as the ones shown above; it has a third DOF allowing 

hip adduction/abduction. This will allow the quadruped extra maneuverability and balance. This 

will give the robot added capabilities such as side-stepping, (see Figure 6). 

 

 



 

 

 

Figure 6. Annotated Drawing of the Serial Leg Structure with All Joints Included. 

Figure 6 shows the serial portion of leg structure as it was used in this application. Notice the 

extra revolute joint at the hip allowing abduction/adduction.  

Another feature of this leg design is its ankle joint. This allows the ankle to switch between a 

spring joint during stance and a passively controlled four bar parallelogram mechanism during 

swing. Using digitized high speed data of a cheetah running we made a mechanism that would 

lift the foot during swing in the same way as the cheetah. When force is applied to the foot, 

however, an elastic member which plays a similar role to the Achilles tendon of humans is 

engaged and makes the ankle a passive spring joint. This allows the entire leg to be controlled 

with only three actuators. 



 

Figure 7.  Annotated Sketch of the Ankle Mechanism.  When a force is applied to the foot and it 

rotates clockwise, the ankle joint becomes a spring loaded joint, but in the absence of the force, 

the four-bar mechanism engages the foot and controls its position during the swing phase of gait. 

 

 

      Configuring and implementing these actuators in a workable design presented several 

engineering problems. The first was that there are several possible configurations to select from. 

These are detailed in Tables 1-3: Configurations 1 and 2. These various configurations will be 

outlined in the following text.  

 

Table 1. LIST OF ALL POSSIBLE ACTUATOR CONFIGURATIONS 

 Thigh Shank 

Config 1 2 Actuators 1 Actuator 

Config 2 1 Actuator 2 Actuators 

Config 3 0 Actuators 3 Actuators 

 

 



The authors did not want to create an over actuated system, as this adds unnecessary 

complication to the system at this stage of the project. For example, one can choose to connect 

zero, one, or two actuators to the thigh but not all three. This is because the hip joint only allows 

two DOF: flexion/extension and abduction/adduction. If three actuators are connected to this 

segment one of them will be dependent on the position of the other two. Additionally, the knee 

joint would be entirely unactuated (Or a fourth motor could be added to the system to actuate the 

knee, but this would create an over-actuated system: 3 degrees of freedom and 4 actuators).  

 

In Configuration 1, two actuators are connected to the thigh of the robot and one is connected the 

shank. Table 2 describes how each motor affects the leg joints in this configuration, and Figure 6 

is an annotated drawing of the configuration. 

 

 

 

 Table 2: BREAKDOWN OF CONFIGURATION 1 

 Actuator 3 

- Thigh 

Actuator 1 

- Thigh 

Actuator 2 

- 

Shank 

Hip Ad/ 

Ab 

Actuated Actuated Actuated 

Hip Flex/ 

Ext 

Actuated Actuated Actuated 

Knee 

Flex/ Ext 

Un-

actuated 

Un-

actuated 

Actuated 

Ankle 

Flex/ Ext 

Un-

actuated 

Un-

actuated 

Un-

actuated 



 

 

 

Figure 8. Annotated Sketch of Configuration 1 in three dimensions. 

 

 

In Configuration 2 (Figure 9), one motor is connected to the thigh and two motors are connected 

to the shank. Table 3 describes how each motor affects the leg joints in this configuration, and 

Figure 7 is an annotated drawing of the configuration. 

 

 

Table 3: Breakdown of Configuration 2 

 Actuator 

3 - Thigh 

Actuator 

1 - Shank 

Actuator 2 

- Shank 

Hip Ad/ 

Ab 

Actuated Actuated Actuated 

Hip Flex/ Actuated Actuated Actuated 



Ext 

Knee 

Flex/ Ext 

Un-

actuated 

Actuated Actuated 

Ankle 

Flex/ Ext 

Un-

actuated 

Un-

actuated 

Un-

actuated 

 

After some analysis Configuration 2 was shown to be significantly better than Configuration 1 

when it came to increasing the conditioning number of the leg Jacobian (see design of physical 

prototype section). 

 

 

 

Figure 9.   Annotated sketch of Configuration 2 in three dimensions.  This configuration allowed 

a much greater usable workspace. 

 

Kinematics 

     Another engineering problem faced in the design and implementation process, was the 

selection of the geometric properties of the linkages. The kinematics of the leg mechanism would 



have to be solved to gain a scientific understanding of the problem. In fully serial robot limbs the 

forward kinematics are commonly used and tend to be a simple problem to solve.  

The inverse kinematics for a serial mechanism are not as simple. However, in parallel robots 

the inverse kinematics problem tends to be simpler, and the forward kinematics more complex. 

Our design is a combination of the two; therefore, challenges arise when solving either forward 

or inverse kinematics. In the end the inverse kinematic equations were solved. A detailed 

description of the solution to the inverse kinematic equations is given. 

The first step in this method of solving the equations for this robot was to break the problem up 

into two parts: the serial portion of the leg and the parallel portion of the leg.  

     Serial Kinematics. The serial portion of the robot limb is shown in Figure 10. Notice that the 

foot is left out of this diagram. This greatly simplifies the kinematic solution. In fact if the foot 

and ankle angle are left in the kinematics, there are infinite solutions to the inverse kinematic 

equations. This also would make the Jacobian matrix noninvertible. Recall that for this system, 

the ankle is controlled by a spring during stance and a mechanism during swing. For stance this 

means that with a desired force output the ankle joint will need to be at some known angle. For 

swing, the position of the foot will be defined by the thigh and shank leg segments. In both cases 

controlling the ankle joint’s position will be enough to fully define the leg. Figure 10 shows the 

thigh and the shank, along with all of the angles needed to fully define their position in space.  

 



Figure 10. Serial Limb Annotated Sketch 

 

 

From Figure 10 it can be seen how the two degree of freedom hip connects the thigh to the 

body. The first rotation Hip Hip, 

controls hip abduction and adduction. The third rotation is knee, it controls knee flexion and 

extension. The goal is to determine these angles given a three dimensional ankle joint position 

and the geometric properties of the leg. The first step is to find the hip and knee angles. We 

know that the axis𝐴1́  lies in the plane that contains the thigh and the shank sections of the leg. 

We can define axis one as a function of Hip: 

𝐴1́ = [

𝑐𝑜𝑠 (𝜃𝐻𝑖𝑝)

−𝑠𝑖𝑛 (𝜃𝐻𝑖𝑝)

0

]          (1) 

 

The dot product of 𝐴1́ and the vector between the hip and the ankle (𝑂2´ )is defined: 

 

𝑂2´ ∙ 𝐴1́ = |𝑂2´ ||𝐴1́|𝑐𝑜𝑠(𝛾 + 𝜙)       (2) 

 

Note that 𝛾 and 𝜙 are angles shown in Figure 8. The angle 𝛾 is a constant geometric property 

of the leg and 𝜙 can be easily found using the Law of Cosines since the three lengths of the 

triangle that contain it are already known. Since 𝐴1́is a function of Hip, this equation can be 

solved symbolically for Hip (using symbolic math software such as Matlab). 

Finding Knee is just a matter of solving the triangle formed by points 0, 1, and 2 using law of 

cosines to find the inner angle and subtracting that from pi to determine Knee. 

The angle Hip is the arctangent of the perpendicular distance from 𝐴1́ to the ankle over the 

height of the ankle coordinate:  



𝛼𝐻𝐼𝑃 = 𝑎𝑡𝑎𝑛2 (
−𝑦2

𝑥2𝑠𝑖𝑛𝜃𝐻𝑖𝑝+𝑧2𝑐𝑜𝑠𝜃𝐻𝑖𝑝
)       (3) 

 

where, 𝑥2, 𝑦2, and 𝑧2,, are the x, y, and z coordinates of the ankle joint (joint 2  in Figure 8).  

 

     Parallel Kinematics. The next part of solving the inverse kinematics of the leg is solving the 

parallel portion of the leg. This means, given the leg angles found in part 1 of the kinematics, 

find the motor angles. To understand the solution to this problem, the two link mechanism needs 

to be defined more specifically. It is an “RSS” linkage. The joint fixed to the leg segment is a 

spherical joint. The middle joint in the linkage (joint A0) is also a spherical joint. Joint A is the 

motor.  Link BA0 will be called the connecting rod and link AA0 will be called the control arm. 

The control arm rotates about the motor which is fixed to the body. Joint A0 is therefore confined 

to rotate in a circle centered at point A and perpendicular to the motor axis U. Point B is fixed to 

the leg. The angles of which are known from the analysis of the serial kinematics. This means 

the position of B can be found by using a rotation matrix. Therefore the control arm is confined 

to rotate about a known point (B). The position of point A0 must be on a sphere about Point B 

whose radius is the length of the connecting rod. This means that A0 is located at the intersection 

of the sphere centered at point B and the circle centered at point A. (See Figure 11) 

 

Figure 11: Defining the circle centered at B0. This is the intersection of the plane containing 

circle A and sphere B. 

 



 

A0 is confined to a known circle, and therefore, a known plane. The intersection of this plane 

with Sphere B is a circle (see Figure 11). (Also, the intersection could be a point or it could not 

exist at all, in this case the link BA0 would be too short.) This intersecting circle can be defined 

by the known geometric information. The center of the intersecting circle (B0) makes a vector 

with the center of the sphere: 𝐵𝐵0
´ . This vector is parallel with the vector 𝑈́, because B0 is just the 

projection of B onto the plane containing circle A. The vector 𝐵𝐵0
´   can be defined as the 

projection of vector 𝐵𝐴́ on to vector U: 

 

𝐵𝐵0
´ = 𝐵𝐴́ ∙ 𝑈́           (4) 

 

The center (B0) of the intersecting circle is now known and finding the radius will fully define 

the circle. This is accomplished by solving for the third length of a right triangle, see Figure 12. 

 

 

Figure 12. Finding the radius of the intersecting circle at B0. 

 

The equation for the radius follows: 

 

 



𝜌0 = √𝜌2 − |𝐵𝐵0
´ |

2
        (5) 

 

where 𝜌0 is the radius of the intersecting circle centered at B0. The goal is to find 𝜃𝑚. We can 

write 𝜃𝑚 as a function of 𝛾 and 𝜙 (see Figure 13).  The angles 𝛾 and 𝜙 are used separately in serial 

and parallel kinematics. So the angles 𝛾 and 𝜙 of Figures 8 and 11 are different. 

The next step towards solving for 𝜃𝑚 involves solving the triangle formed by the points B0, A0, 

and A. The three lengths of this triangle are known: |𝐵0𝐴0
´ | is 𝜌0, and |𝐴0𝐴´ |  is the length of the 

control arm (r), and the last length is the distance between two known points. The inner angle of 

this triangle 𝛾 is necessary to find the motor angle. This angle can be found using law of cosines. 

Next, the angle phi needs to be determined. This is the angle between the vector |𝐴𝐵0
´ | and the 

unit vector Y. This vector Y is an arbitrarily defined vector that represents the direction the 

control arm would be pointing when  𝜃𝑚 is zero. The angle 𝜙 can be found using the dot product 

of the unit vector and the vector |𝐴𝐵0
´ |. Finally, the equation for 𝜃𝑚 is: 

𝜃𝑚 = 𝜙 ± 𝛾                      (6) 

 

 

Figure 13: Final steps to solving the inverse kinematics. The kinematics are solved for 𝜃𝑚. 

 



There are two solutions to this problem, . “elbow in” and the other, “elbow out”.  As can be 

seen in figures 3-5, some of the linkages are set in one configuration and others are set in the 

other. Figures 11-12 show an annotated sketch of both configurations. 

 

Figure 14: Annotated sketch of alternative solutions to the inverse kinematics problem. 

 

 

Jacobian 

Knowing the Jacobian of a robot limb is very important for determining the function of the 

motor. Each column of the Jacobian contains a vector that describes what a unit velocity input at 

the corresponding motor would output at the end effector. For example the first column is the 

vector that points in the direction that the leg will move if the first motor is moved. The Jacobian 

can also be used as a tool to look at torque/force relationships. Taking the transpose of the 

Jacobian gives a matrix that when multiplied with end effector forces gives motor torques. This 

kind of information is useful to know when designing a structure of this complexity.  

For any limb structure calculating the Jacobian is as simple as taking the partial derivatives of 

the kinematics function. For this leg, there are multiple ways to find the Jacobian. The approach 

that we take is to individually differentiate the serial leg kinematics and the parallel kinematics. 

This gives two Jacobian matrices. We will call them JS and Jp for the serial Jacobian and the 

parallel Jacobian, respectively. Defining three input and output vectors will used to define the 

two Jacobians: 



𝑋2́ = [

𝑥2

𝑦2

𝑧2

]         (7) 

 

The vector 𝑋2́ is the x, y, z position of the robot foot relative to the hip joint in body 

coordinates.  

 

𝜃𝑙́ = [

𝜃𝐻𝑖𝑝

𝛼𝐻𝑖𝑝

𝜃𝐾𝑛𝑒𝑒

]         (8) 

The vector 𝜃𝑙́ is the vector of leg angles that are controlled by the actuators. The ankle joint is 

being ignored here.  

 

𝜃𝑚́ = [

𝜃𝑚1

𝜃𝑚2

𝜃𝑚3

]          (9) 

 

The vector 𝜃𝑚́ contains the position of each motor on the leg. Now the Jacobian matrices can 

be defined.  

 

𝑋2́
´ = 𝐽𝑠𝜃𝑙

´́        (10) 

 

The matrix 𝐽𝑠 is the Jacobian of the serial leg. We found this matrix by taking partial 

derivatives of the inverse kinematics and finding 𝐽𝑠
−1 analytically. The numerical inverse of this 

matrix can then be taken to determine 𝐽𝑠.  When multiplied with the derivative of the leg angles 

this Jacobian gives a vector that represents the time derivative of the ankle position. Next the 

parallel kinematics can be used to find another Jacobian matrix. 



 

𝜃𝑙
´́ = 𝐽𝑝𝜃𝑚́

´        (11) 

 

The matrix 𝐽𝑝 is the Jacobian of the parallel mechanism. It is found in the same manner as 

above. The partial derivatives of the inverse kinematics are used to find 𝐽𝑝
−1 and then the 

numerical inverse of this matrix produces 𝐽𝑝. This matrix establishes velocity relationships 

between motor speeds and joint speeds. It can be useful for visualizing the effect a given motor 

has on each joint.  The whole leg Jacobian is the product of these two matrices. Substituting 𝜃𝑙
´́  

from (11) into (10) yields: 

 

𝑋2́
´ = 𝐽𝑠𝐽𝑝𝜃𝑚́

´ = 𝐽𝜃𝑚́
´       (12) 

 

where J is the classic Jacobian matrix. When multiplied with actuator speeds, it produces the end 

effector velocity vector. The Jacobian matrix was used heavily in the design process. It helped to 

create tools that gave numerical design goals, and simplified a large design space into a smaller 

one. 

 

 

Design of physical Prototype 

     Selecting Geometric Properties. After selecting an actuation method, solving the kinematics 

equations, and defining the Jacobian matrices, the next step towards a functional leg prototype 

was selecting values for all the geometric properties of the leg. We used a gait pattern digitized 

from high speed footage of a cheetah running as a starting place. This presented an ambitious 

goal in terms of range of motion. For example, it required over 150 degrees of total hip 

flexion/extension.   



Originally the authors chose to actuate the system with Configuration 1, but in the process of 

analysis it was discovered that this configuration was not ideal for the application.  The 2-norm 

condition number of the Jacobian was plotted throughout the workspace of the robot arm, and in 

almost every position it was ill conditioned. Therefore, the robot was not controllable in 3D 

space by the motors. Even with an optimization tool, we could not find a solution with usable 

properties.  

Switching to Configuration 2 solved the ill-conditioning problem. The optimization tool we 

developed was able to find a solution that had more than enough “usable workspace”. For this 

application usable workspace will be defined as any point in 3D space when the end effector is in 

that position its 2-norm condition number is less than 20. Figure 15 shows the improvement in 

usable workspace. The plot shows the surface that is the boundary between usable workspace 

and unusable workspace. The robot leg is shown in red for scale.  It is obvious that selection of 

configuration can make a big difference. 

 



 

 

 

Figure 15. Improvement of volume of usable 

workspace. Upper figure shows workspace of the 

configuration 2 while the lower figure shows the 

workspace of configuration 1. 

 

 



     Building a Prototype. After selecting the leg’s geometry, a physical model was designed in 

CAD software and printed via a 3D printer. The actuator we chose to use is a Dynamixel RX-

24F actuator. This actuator has a small electric motor coupled with a 193:1 gear reduction. The 

on board electronics were replaced by a more versatile off-board multi-axis robot controller 

developed by SpringActive, Inc.  

 

     Testing on a Treadmill. To validate this approach, we set up a treadmill test. We fabricated a 

stand over the treadmill to which the leg prototype could be clamped. A gait profile was then 

created using an ankle joint path and the inverse kinematic solution. This path was commanded 

to the motors in a simple PID negative feedback loop. See Figure 16 for a series of photos of the 

leg as it moves through its gait pattern. The test validated the inverse kinematics and gave insight 

into the next stage of development of the leg. More rigorous testing will commence with the leg 

moving through different gait patterns for walking and running. 

 

 

Figure 16: The leg moving through a gait pattern on a treadmill. 



 

Conclusions 

This paper outlines the design effort of a novel actuation approach from conceptualization to 

the first stages of testing. It details the choice of configuration, which turned out to be important, 

and somewhat counter intuitive. It also walks through the kinematic solutions, showing relatively 

simple solutions to challenging problems. The goal of the work is to use multiple small motors in 

parallel to actuate the hip and the knee.  In this way, during the stance phase of gait, multiple 

motors can be used in parallel to provide a powerful burst for push-off.  Our two-link parallel 

structure allows the motors to cross multiple joints and therefore can be used to actuate several 

joints at once. Also, by mounting motors at the base, the inertia of the leg is greatly reduced. A 

first treadmill test was performed to validate the work.  
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