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ABSTRACT

The motivation of this project is to determine the optimum dimensions of the brake disc for
a four-wheeler vehicle using MATLAB and ANSYS. These dimensions include the disc inner
radius, outer radius and thickness. Structural, modal and thermal load cases for emergency
braking conditions are individually considered to determine these dimensions. The optimization
objective is to minimize the brake disc volume, whereas the other objectives are to minimize
the stress, temperature and maximize the first natural frequency of the disc. These goals are
accomplished using optimization algorithms in MATLAB and the results are correlated with
the values obtained from ANSYS. Finally, system optimization is performed using MOGA by
integrating all the load cases.
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1 Design Problem Statement

Primary objective: To minimize the brake disc volume for emergency braking conditions

Secondary objectives:

• Minimize the maximum stress in the brake disc

• Maximize the first natural frequency of the brake disc

• Minimize the maximum temperature in the brake disc

1.1 Subsystem 1: Structural Analysis

Team Member: Swapnil Nimse

The brake disc has to sustain the pressure from the hydraulically actuated brake pads during
sudden braking conditions. Stresses are induced due to friction between the brake pads and the
disc. The disc also experiences centrifugal body forces due to its rotation. Resultant stresses
generated due these forces can lead to material failure. Therefore, it is of prime importance to
make sure that the stresses in the disc are minimized.

1.2 Subsystem 2: Modal Analysis

Team Member: Abhijeet Durgude

Free modal analysis is performed to ensure that the disc’s first natural frequency is higher
than the engine firing frequency. This guarantees that the disc does not experience failure due
to resonance.

1.3 Subsystem 3: Thermal Analysis

Team Member: Sharan Kishore

Braking in a vehicle takes place due to friction between the brake pads and the rotor disc.
This leads to heat flux generation in the disc which consequently results in increase in its
temperature and thermal stresses. Emergency braking conditions induce high temperatures
that damage the contact surfaces. It is therefore essential to minimize the temperature to
prevent disc wear and tear.

1.4 Subsystem 4: MATLAB Programming

Team Member: Aditya Vipradas

Subsystem and system level optimization are performed by programming the entire procedure in
MATLAB. This includes the use of optimization algorithms like interior-point method (fmincon),
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and Multi-Objective Genetic Algorithm (MOGA), plotting the Pareto curves for subsystem and
system level optimization and generating results for validation purposes.

The design optimization methodology flowchart is as shown in Figure 1.

Figure 1: Design optimization process flowchart

2 Nomenclature

V : Volume (mm3)

α: Regression coefficients for volume

S: Stress (MPa)

β: Regression coefficients for stress

F : First natural frequency (Hz )

γ: Regression coefficients for frequency

T : Temperature (oC)

δ: Regression coefficients for temperature
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P1: Inner disc radius (mm)

P2: Outer disc radius (mm)

P3: Disc thickness (mm)

d: Braking distance (m)

te: Braking time (s)

u: Initial vehicle velocity (kmph)

m: Vehicle mass (kg)

ν: Coefficient of friction

w: Disc rotational velocity (rad/s)

Ravg: Average of P1 and P2 (mm)

KE: Vehicle kinetic energy (J )

Fb: Total braking force on the disc (N )

P : Pressure acting on the disc due to one brake pad (Pa)

Ap: Brake pad area (mm2)

Asp: Brake pad swept area (mm2)

q: Heat flux (W/m2)

Tamb: Ambient temperature (oC)

3 Mathematical Model

The brake disc inner radius (P1), outer radius (P2) and thickness (P3) are the design variables
in this optimization study. Initially, structural, modal and thermal analyses are performed
in ANSYS. For the assumed geometric constraints, Design Of Experiment (DOE) points are
generated. Mathematical model is then generated by performing a 2nd order regression analysis
on these DOE points to obtain the volume, stress, frequency and temperature quadratic
functions. The optimization problem is designed as follows:

Primary objective:

Minimize : f1 : V =
n=3∑
n=1

αnxn +
n=6∑
n=4

αnx
2
n + α7; (R2

volume = 0.98) (1)
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Secondary objectives:

f2 : Minimize : S =
n=3∑
n=1

βnxn +
n=6∑
n=4

βnx
2
n + β7; (R2

stress = 0.53)1 (2)

f3 : Maximize : F =
n=3∑
n=1

γnxn +
n=6∑
n=4

γnx
2
n + γ7; (R2

frequency = 0.92) (3)

f4 : Minimize : T =
n=3∑
n=1

δnxn +
n=6∑
n=4

δnx
2
n + δ7; (R2

thermal = 0.97) (4)

Geometrical constraints for all subsystems:

g1 : −P1 ≤ −66 (5)

g2 : P1 ≤ 90 (6)

g3 : −P2 ≤ −124 (7)

g4 : P2 ≤ 150 (8)

g5 : −P3 ≤ −5 (9)

g6 : P3 ≤ 27 (10)

This is a multi-objective optimization problem. A multi-objective optimization algorithm can
be readily solved using MOGA. But MOGA will not always give the best optimum value.
Therefore, it is beneficial to convert the multi-objective problem into a single objective problem
by assuming the rest of the objectives as constraints. In order to use single-objective optimization
algorithms for this problem, it is thus necessary to provide upper or lower bounds on the
secondary objective functions. This aids in plotting the desired Pareto curves. The bounds are
determined by taking into consideration the brake disc failure.

Design constraints:
g7 : S ≤ 14MPa (11)

g8 : −F ≤ −1200Hz (12)

g9 : T ≤ 400oC (13)

The sub-system level optimization problems are designed as follows:

3.1 Structural Analysis Model

Min : f1, f2

s.t.
g1, g2, g3, g4, g5, g6 and g7

15th order polynomial fit gives a better R2 value of 0.77. Kriging model may work better as well.
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3.2 Modal Analysis Model

Min : f1,−f3

s.t.
g1, g2, g3, g4, g5, g6 and g8

3.3 Thermal Analysis Model

Min : f1, f4

s.t.
g1, g2, g3, g4, g5, g6 and g9

4 Model Analysis

The flowchart for optimization in ANSYS is shown in Figure 2. This figure pertains to the
flowchart for structural analysis. Similar procedure is followed for modal and thermal analyses.

Figure 2: ANSYS Optimization Flowchart

10



4.1 FE Model

The brake disc geometry is prepared in ANSYS DesignModeler as shown in Figure 3. The
initial values for P1, P2 and P3 are considered to be 75 mm, 125 mm and 25 mm respectively.
These values are obtained from the literature survey by considering disc dimensions in different
vehicles.

Figure 3: Disc Brake CAD Model

The CAD geometry is meshed using 6 mm sized tetrahedral quadratic elements as shown
in Figure 4.

Figure 4: Disc Brake Mesh Model
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The brake disc is made of gray cast iron. The material properties of gray cast iron are
shown in Table 1.

Property Value Unit
Density 7200 kg/m3

Young’s modulus 110 GPa
Poisson’s ratio 0.28 -
Thermal conductivity 52 W/moC
Specific heat 447 J/kgoC

Table 1: Gray cast iron material properties

The assumptions made for performing the FEM analysis are as follows:

• The braking torque distribution between the front and rear axles is 70:30.

• Natural convection takes place due to the ambient air.

• The disc brake considered is of the solid type.

• Heat flux on the disc brake acts on both sides of the disc.

4.2 Structural Analysis

Considering the emergency braking distance of 10 m with stopping time of 5 seconds for a
vehicle with initial velocity of 90 km/hr, the braking pressure required is calculated. This
pressure will act as one of the boundary conditions for the simulation. It is assumed that
70% of the braking power is in the front axle of a four-wheeler vehicle. The force acting on
a single disc brake is calculated by multiplying the front axle braking power by 0.5. Using
this, the pressure on each pad is calculated by considering the coefficient of friction. Here,
d = 10m; te = 5s;u = 90kmph;m = 1500kg; ν = 0.22;Ap = 3552mm2.

Calculating the disc angular velocity (ω),

ω = u/Ravg = 250rad/s (14)

Evaluating the total braking force on the disc (Fb),

Fb = (KE ∗ 0.5 ∗ 0.7)/d = 16.406kN (15)

Formulating the pressure exerted by one brake pad on the disc (P ),

P = Fb/(2 ∗ Ap ∗ ν) = 10.495MPa (16)

Static structural analysis is performed on the aforementioned geometry due to the brake pad
actuating load acting on the disc. The boundary conditions imposed on the brake geometry
are as follows. See Figure 5.

• The inner circumference of the wheel hub has a revolute joint applied.
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• The brake caliper pads are constrained in X and Z directions. They are kept free to move
in the Y direction.

• The rotational velocity of 250 rad/s is applied on the disc at the wheel hub attachment
point.

• Frictional contact is provided between the brake caliper pads and brake rotor.

• Actuating pressure of 10.496 MPa is applied on the brake pads.

Figure 5: Static structural boundary conditions

The stress plot obtained is as shown in Figure 6. As observed, the maximum stress of 14.262
MPa is obtained for initial conditions on the design variables.

Figure 6: Stress plot for initial conditions on the design variables
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4.3 Modal Analysis

Modal analysis is performed on the brake disc to determine its free natural frequency. The
brake caliper pad geometry is suppressed while performing this analysis because the natural
frequency of the brake disc is to be determined. Figure 7 shows the first natural frequency and
its mode shape.

Figure 7: Mode shape plot for initial conditions on the design variables

4.4 Thermal Analysis

Transient thermal analysis is performed on the disc to observe the maximum temperature rise
after the braking operation. The heat flux is calculated as shown below. It is assumed that
70% of the braking power is in the front axle of a four-wheeler vehicle. The total heat flux
is also multiplied by 0.5 to get the flux generated by a single pad on the disc brake. Here,
te = 5s;Asp = 0.021m2;Tamb = 35oC.

Calculating the heat flux (q) generated on each face of the disc,

q = (KE ∗ 0.5 ∗ 0.7)/(te ∗ Asp) = 1.5395e6W/m2 (17)

Boundary conditions applied for the transient thermal analysis are as follows:

• Heat flux of 1.5395e6W/m2 is applied on the swept area of both the pads while the
direction of heat flow is towards the disc.

• Convection is applied on all the surfaces with the air film coefficient of 5W/m2K which
is the default value for standard air.

• Initial temperature is kept at 35oC.
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The analysis is performed for 5 s which is the braking time. The boundary conditions for this
analysis are shown in Figure 8

Figure 8: Transient thermal boundary conditions

The temperature plot obtained is as shown in Figure 9. As observed, the maximum
temperature of 321oC is obtained for initial conditions on the design variables.

Figure 9: Temperature plot for initial conditions on the design variables

4.5 Design of Experiments

After the initial analysis of each subsystem, the relationship between the design variables and
output response is determined. All of the input variables are quantitative and continuous
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in nature. To obtain the accurate response surface, minimum number of design points from
the given sample space are required. Latin Hypercube Sampling (LHS) technique with user
defined sample points is used to create the response surface. The main advantage of LHS is
that all the sample points are varying in nature. Unlike other sampling methods like Central
Composite Design (CCD) and the full factorial methods, the number of simulations required
for LHS remains constant even with an increasing number of parameters. After the design of
experiments process, we obtain various combinations of input parameters and the corresponding
response values. All the 50 DOE points are shown in Appendix A.

4.6 Response Surface

After DOE, a response surface is generated for all the input and output values using the least
squares methodology. The data points are fitted with a standard 2nd order model. The points
generated on the response surface are then used to perform the optimization. The goodness of
fit plots for all the subsystems are shown below.

Figure 10: Goodness of fit plot for structural analysis
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Figure 11: Goodness of fit plot for modal analysis

Figure 12: Goodness of fit plot for thermal analysis
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5 Optimization Study

5.1 Structural Analysis Optimization

For the subsystem 1 optimization problem, the upper bound on the stress constraint from
Equation 11 is parametrized and the corresponding optimal volume is evaluated using the
Interior-Point Method (IPM) in MATLAB. A Pareto curve of optimal volume against the
respective stress upper bound is plotted using the IPM and MOGA algorithms as shown in
Figure 13. All the MATLAB codes are attached in Appendix B. As observed from the figure,
the curves obtained using both the algorithms are in good agreement with each other. Using
the Pareto curve, one can easily obtain the optimal volume value for a given stress upper bound
constraint.

Figure 13: Correlation of Pareto curves from IPM (fmincon) and MOGA for structural analysis

It is observed from the Lagrange multiplier values that constraints g3, g5 and g7 become
active. The design variables optimal values obtained for 14 MPa stress upper bound are
correlated with those obtained from ANSYS in the results section. The optimal design variables
candidate points obtained in ANSYS by the implementation of MOGA are shown in Figure 14.
The highlighted candidate point (least volume) is chosen as the best point which is used for
validation purposes.

5.2 Modal Analysis Optimization

For the subsystem 2 optimization problem, the lower bound on the first natural frequency
constraint from Equation 12 is parametrized and the corresponding optimal volume is evaluated
using IPM in MATLAB. A Pareto curve of optimal volume against the respective frequency
lower bound is plotted using the IPM and MOGA algorithms as shown in Figure 15. As
observed from the figure, the curves obtained using both the algorithms are in good agreement
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Figure 14: Optimal dimensions candidate points for structural analysis

with each other. Using the Pareto curve, one can easily obtain the optimal volume value for a
given frequency lower bound constraint.

Figure 15: Correlation of Pareto curves from IPM (fmincon) and MOGA for modal analysis

It is observed from the Lagrange multiplier values that constraints g3 and g8 become active.
The design variables optimal values obtained for 1200 Hz frequency lower bound are correlated
with those obtained from ANSYS in the results section. The optimal design variables candidate
points obtained in ANSYS by the implementation of MOGA are shown in Figure 16. The
highlighted candidate point (least volume) is chosen as the best point which is used for validation
purposes.
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Figure 16: Optimal dimensions candidate points for modal analysis

5.3 Thermal Analysis Optimization

For the subsystem 3 optimization problem, the upper bound on the temperature constraint
from Equation 13 is parametrized and the corresponding optimal volume is evaluated using
the Interior-Point Method (IPM) in MATLAB. A Pareto curve of optimal volume against the
respective temperature upper bound is plotted using the IPM and MOGA algorithms as shown
in Figure 17. As observed from the figure, the curves obtained using both the algorithms are
in good agreement with each other. Using the Pareto curve, one can easily obtain the optimal
volume value for a given temperature upper bound constraint.

Figure 17: Correlation of Pareto curves from IPM (fmincon) and MOGA for thermal analysis
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It is observed from the Lagrange multiplier values that constraints g3 and g9 become active.
The design variables optimal values obtained for 400oC temperature upper bound are correlated
with those obtained from ANSYS in the results section. The optimal design variables candidate
points obtained in ANSYS by the implementation of MOGA are shown in Figure 18. The
highlighted candidate point (least volume) is chosen as the best point which is used for validation
purposes.

Figure 18: Optimal dimensions candidate points for thermal analysis

6 Discussion of Results

6.1 Structural Analysis Results

As observed from the Pareto curves in Figure 13, the optimal volume magnitude increases as
the stress upper bound decreases. The objective here is to minimize the stress and volume
which ensures a trade-off between the two. This trade-off makes the stress constraint (g7)
active. The lower bound of the outer radius (g3) and thickness (g5) constraints are also active.
This is confirmed by obtaining and analyzing the Langrange multipliers for all the constraints.
Optimal values of the design variables for 14 MPa stress constraint are obtained from MATLAB
(fmincon algorithm) and ANSYS (MOGA). Their correlation is shown in Table 2.

Parameter Initial Optimal value Optimal value Error (%)
value from MATLAB (m) from ANSYS (a) (a−m)/m

P1 75.00 78.42 75.05 1.05
P2 125.00 124.00 124.19 0.15
P3 25.00 5.00 5.08 1.06
S 14.26 14.00 13.99 -0.07

Table 2: Correlation between MATLAB (IPM) and ANSYS (MOGA) optimal values for 14
MPa stress constraint
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The error values in the table show that the MATLAB and ANSYS optimal values are in
good agreement with each other. The stress constraint being active, the optimal stress value
obtained from ANSYS should be 14 MPa. But as observed from the Table, the ANSYS value
is 14.26 MPa. This has introduced errors in the disc dimension values. These errors will reduce
if MOGA generates an optimal stress value closer to 14 MPa in ANSYS.

6.2 Modal Analysis Results

As observed from the Pareto curves in Figure 15, the optimal volume magnitude increases
as the frequency lower bound increases. The objective here is to maximize the frequency
and minimize the volume which ensures a trade-off between the two. This trade-off makes
the frequency constraint (g8) active. The lower bound of the outer radius (g3) constraint is
also active. This is confirmed by obtaining and analyzing the Langrange multipliers for all
the constraints. Optimal values of the design variables for 1200 Hz frequency constraint are
obtained from MATLAB (fmincon algorithm) and ANSYS (MOGA). Their correlation is shown
in Table 3.

Parameter Initial Optimal value Optimal value Error (%)
value from MATLAB (m) from ANSYS (a) (a−m)/m

P1 75.00 78.25 83.40 6.58
P2 125.00 124.00 124.19 0.15
P3 25.00 7.76 7.23 -6.82
F 1590.00 1200.00 1263.62 5.30

Table 3: Correlation between MATLAB (IPM) and ANSYS (MOGA) optimal values for 1200
Hz frequency constraint

The error values in the table show that the MATLAB and ANSYS optimal values are in
good agreement with each other. The frequency constraint being active, the optimal frequency
value obtained from ANSYS should be 1200 Hz. But as observed from the Table, the ANSYS
value is 1263.62 Hz. This has introduced errors in the disc dimension values. These errors will
reduce if MOGA generates an optimal frequency value close to 1200 Hz in ANSYS.

6.3 Thermal Analysis Results

As observed from the Pareto curves in Figure 17, the optimal volume magnitude increases as
the temperature upper bound decreases. The objective here is to minimize the temperature
and volume which ensures a trade-off between the two. This trade-off makes the temperature
constraint (g9) active. The lower bound of the outer radius (g3) constraint is also active. This is
confirmed by obtaining and analyzing the Langrange multipliers for all the constraints. Optimal
values of the design variables for 400oC temperature constraint are obtained from MATLAB
(fmincon algorithm) and ANSYS (MOGA). Their correlation is shown in Table 4.

22



Parameter Initial Optimal value Optimal value Error (%)
value from MATLAB (m) from ANSYS (a) (a−m)/m

P1 75.00 83.16 82.77 -0.46
P2 125.00 124.00 124.59 0.47
P3 25.00 13.69 15.54 13.51
T 321.70 400.00 385.81 -3.54

Table 4: Correlation between MATLAB (IPM) and ANSYS (MOGA) optimal values for 400oC
temperature constraint

The error values in the table show that the MATLAB and ANSYS optimal values are in good
agreement with each other. The temperature constraint being active, the optimal temperature
value obtained from ANSYS should be 400oC. But as observed from the Table, the ANSYS
value is 321.7oC. This has introduced errors in the disc dimension values. These errors will
reduce if MOGA generates an optimal stress value closer to 400oC in ANSYS.

7 System Integration Study

After performing the individual subsystem level optimization, an attempt is made to integrate
all the subsystems. There are four objective functions in this problem. As it is not possible
to plot 4D Pareto curves, three objective functions are considered at a time so that 3D Pareto
curves can be easily plotted from them in MATLAB. This study helps us understand the
relationship between three objective functions at a time.

7.1 Combined Modal & Thermal Optimization

The mathematical model for this system level optimization is as follows:

Min : f1,−f3, f4

s.t.
g1, g2, g3, g4, g5, g6, g8 and g9

Optimization is performed in MATLAB using the single objective IPM (fmincon) method.
This algorithm being used for single objective optimization problem, the volume function is
considered to be the primary objective and the frequency and temperature objective functions
are considered as constraints. The lower and upper bounds on frequency and temperature
respectively are varied and a Pareto curve for volume, frequency and temperature is obtained
as shown in Figure 19. The optimal volume value for 1200 Hz lower bound on frequency and
400oC upper bound on temperature is obtained from this Pareto curve and is correlated with
a MOGA value obtained from ANSYS.
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Figure 19: Pareto curve for volume, frequency and temperature

As observed from this Pareto curve, for a given temperature constraint, the optimal volume
does not vary with the frequency constraint. Thus, we have the temperature constraint (g9)
active. This is verified from the Lagrange multipliers obtained from MATLAB. MATLAB
(fmincon algorithm) and ANSYS (MOGA) correlation for one of the temperature and frequency
constraints is presented in Table 5. The candidate points obtained from ANSYS are shown in
Figure 20. The highlighted point (least volume) is chosen as the best optimal point.

Figure 20: Optimal dimensions candidate points for combined modal and thermal analysis
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Parameter Initial Optimal value Optimal value Error (%)
value from MATLAB (m) from ANSYS (a) (a−m)/m

P1 75.00 83.16 88.19 6.04
P2 125.00 124.00 124.10 0.08
P3 25.00 13.69 14.64 6.93
F 1590.00 1310.60 1220.20 -6.89
T 321.70 400.00 399.80 -0.05

Table 5: Correlation between MATLAB and ANSYS optimal values for 1200 Hz frequency
constraint and 400oC temperature constraint

As observed from the Table 5, there is no significant difference in the error percentage
between ANSYS and MATLAB values. Moreover, MATLAB gives a better optimal point (lower
dimensions and volume) as compared to the ANSYS value. MOGA solutions do not satisfy the
KKT conditions. The initial volume being 9.96∗105mm3, MATLAB optimal solution gives the
minimum volume to be 5.78 ∗ 105mm3 i.e. an improvement in the volume reduction of 41.9%.

7.2 Combined Modal & Structural Optimization

The mathematical model for this system level optimization is as follows:

Min : f1, f2,−f3

s.t.
g1, g2, g3, g4, g5, g6, g8 and g7

Optimization is performed in MATLAB using the single objective IPM (fmincon) method.
This algorithm being used for single objective optimization problem, the volume function is
considered to be the primary objective and the frequency and stress objective functions are
considered as constraints. The lower and upper bounds on frequency and stress respectively
are varied and a Pareto curve for volume, frequency and stress is obtained as shown in Figure
21. The optimal volume value for 1200 Hz lower bound on frequency and 14 MPa upper bound
on stress is obtained from this Pareto curve and is correlated with a MOGA value obtained
from ANSYS. As observed from this Pareto curve, for a given frequency constraint, the optimal
volume doesn’t vary with the stress constraint. Thus, we have the frequency constraint (g8)
active. This is verified from the Lagrange multipliers obtained from MATLAB. MATLAB
(fmincon algorithm) and ANSYS (MOGA) correlation for one of the stress and frequency
constraints is presented in Table 6. The candidate points obtained from ANSYS are shown in
Figure 22. The highlighted point (least volume) is chosen as the best optimal point.

25



Figure 21: Pareto curve for volume, frequency and stress

Figure 22: Optimal dimensions candidate points for combined modal and structural analysis

Parameter Initial Optimal value Optimal value Error (%)
value from MATLAB (m) from ANSYS (a) (a−m)/m

P1 75.00 78.25 81.64 4.33
P2 125.00 124.00 124.33 0.26
P3 25.00 7.76 6.61 -14.81
F 1590.00 1200 1261.30 5.10
S 14.26 12.77 13.20 3.36

Table 6: Correlation between MATLAB and ANSYS optimal values for 1200 Hz frequency
constraint and 14 MPa stress constraint
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As observed from the Table 6, there is no significant difference in the error percentage
between ANSYS and MATLAB values. Moreover, MATLAB gives a better optimal point
(lower dimensions and volume) as compared to the ANSYS value. The initial volume being
9.96 ∗ 105mm3, MATLAB optimal solution gives the minimum volume of 3.54 ∗ 105mm3 i.e. an
improvement in the volume reduction of 64.4%.

7.3 Combined Structural, Modal & Thermal Optimization

The mathematical model for this system optimization is as follows:

Min : f1, f2,−f3, f4

s.t.
g1, g2, g3, g4, g5, g6

This combined system level optimization is performed in MATLAB and ANSYS using the
MOGA algorithm. The optimization procedure is as shown in Figure 23.

Figure 23: System optimization procedure
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Corresponding points chosen from MATLAB and ANSYS are validated in Table 7. The
highlighted point (least volume) from Figure 24 is chosen as the best optimal point.

Figure 24: Optimal dimensions candidate points for combined structural, modal and thermal
analysis

Parameter Initial Optimal value Optimal value Error (%)
value from MATLAB (m) from ANSYS (a) (a−m)/m

P1 75.00 76.11 81.48 7.05
P2 125.00 124.83 124.33 -0.40
P3 25.00 14.34 13.80 -3.76
F 1590.00 1340.60 1328.1 -0.93
S 14.26 13.28 13.35 0.53
T 321.70 370.75 414.40 11.77
V 9.96*105 6.45*105 6.17*105 -4.34

Table 7: Correlation between MATLAB and ANSYS optimal values for combined structural,
modal and thermal analysis using MOGA

As observed from Table 7, the initial volume being 9.96*105mm3, MATLAB optimal solution
gives the minimum volume as 6.45*105mm3 i.e. an improvement in the volume reduction of
35.2%. The final optimal dimensions (P1, P2 and P3) as given by the MOGA algorithm in
MATLAB are 76.11 mm, 124.83 mm and 14.34 mm respectively.
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Figure 25: Initial and final brake disc geometries
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9 Appendix

9.1 A

The DOE points obtained using the LHS method are as follows:

Figure 26: LHS DOE points

Figure 27: LHS DOE points (continued)

9.2 B

MOGA and fmincon (IPM) MATLAB codes for subsystem and combined system level optimization
are attached below. Respective excel sheet containing all the DOE points should be provided
for the codes to work. The subsystem level codes provided are only for the modal analysis.
Changes can be easily made to make them work for structural and thermal analyses.
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%%ALL CODES ARE WRITTEN BY ADITYA VIPRADAS AND SHARAN KISHORE%%
%%(MEMBERS OF MAE598 DESIGN OPTIMIZATION TEAM 11)%%
 
%%%%%PLOT PARETO CURVES USING FMINCON AND MOGA%%%%%
function [xfmin, ffmin, vfmin, xmoga, fmoga, lambda] = corr_algos_modal ...
    (filename, fstar, N, string1, string2)
    clc;
    [xfmin, ffmin, vfmin, lambda] = fmincon_algo(filename, fstar, N);
    [xmoga, fmoga] = MOGA(filename);
    [fmoga_sort, a_order] = sort(fmoga(:,2));
    vmoga = fmoga(a_order,1);
    figure();
    plot(-ffmin, vfmin,'-o',fmoga_sort, vmoga,'-*');
    grid on;
    legend('fmincon','MOGA');
    xlabel(string2);
    ylabel('volume');
    str = strcat('correlation of pareto curves for ',string1,...
        ' analysis');
    title(str);
end
 
%%%%%EXTRACT DOE DATA FROM EXCEL FOR COMBINED SYSTEM OPTIMIZATION%%%%%
%%%%%PERFORM REGRESSION ANALYSIS ON THE DATA POINTS%%%%%
function [x, f, v, t, s, R2f, R2v, R2t, R2s] = extract(filename)
    global bv bf bt bs
    clc;
    %extract
    data = xlsread(filename);
    x = data(:,1:3);
    f = data(:,4);
    t = data(:,5);
    s = data(:,6);
    v = data(:,7);
    %quadratic fit
    X = [x,x.^2,ones(size(x,1),1)]
 
    %freq regression
    bf = (X'*X)\X'*f;
    
    %vol regression
    bv = (X'*X)\X'*v;
    
    %temp regression
    bt = (X'*X)\X'*t;
    
    %stress regression
    bs = (X'*X)\X'*s;
    
    rf = X*bf-f;
    %R2 value for freq
    R2f = 1-sum(rf.^2)/sum((f - mean(f)).^2);
    
    rv = X*bv-v;
    %R2 value for volume
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    R2v = 1-sum(rv.^2)/sum((v - mean(v)).^2);
    
    rt = X*bt-t;
    %R2 value for temp
    R2t = 1-sum(rt.^2)/sum((t - mean(t)).^2);
    
    rs = X*bs-s;
    %R2 value for temp
    R2s = 1-sum(rs.^2)/sum((s - mean(s)).^2);
end
 
%%%%%EXTRACT DOE DATA FROM EXCEL FOR SUBSYSTEM OPTIMIZATION%%%%%
function [x, f, v, R2f, R2v] = extract(filename)
    global bv bf
    clc;
    %extract
    data = xlsread(filename);
    x = data(:,1:3);
    f = data(:,4);
    v = data(:,7);
    %quadratic fit
    X = [x,x.^2,ones(size(x,1),1)]
 
    %freq regression
    bf = (X'*X)\X'*f;
    
    %vol regression
    bv = (X'*X)\X'*v;
    
    rf = X*bf-f;
    %R2 value for freq
    R2f = 1-sum(rf.^2)/sum((f - mean(f)).^2);
    
    rv = X*bv-v;
    %R2 value for volume
    R2v = 1-sum(rv.^2)/sum((v - mean(v)).^2);
end
 
%%%%%FMINCON IMPLEMENTATION FOR SYSTEM OPTIMIZATION%%%%%
function [xval, lambda] = fmincon_algo(filename, fcon, tcon, scon)
    %nf = 2; % number of objective functions
    %N = 50; % number of points for plotting
    global bf bv bt bs fcon tcon scon
    
    [x, f, v, t, s, R2f, R2v, R2t, R2s] = extract(filename);
    
    %objective function
    obj = @fmincon_obj
    
    %Define the upper and lower bounds
    lb = [66 124 5];
    ub = [90 150 27];
    
    %Define the equality constraints
    Aeq = [];
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    beq = [];
    
    %Define the inequality constraints
    A = [];
    b = [];
    
    h0 = [70 130 20];
    
    options.Algorithm = 'interior-point';
    %nonlinear constraints
    nonlcon = @quadcon;
    [h,fval,exitflag,output,lambda,grad,hessian] = ...
        fmincon(obj, h0, A, b, Aeq, beq, lb, ub, nonlcon, options);
    %disp(xval{2});
    %disp(freq);
    %plot(-freq, vol);
    %grid on;
end
 
%%%%%FMINCON IMPLEMENTATION FOR SUBSYSTEM OPTIMIZATION%%%%%
function [xval, freq, vol, lambda] = fmincon_algo(filename, fstar, N)
    %nf = 2; % number of objective functions
    %N = 50; % number of points for plotting
    global bf bv fstart
    
    fstart = fstar;
    
    [x, f, v, R2f, R2v] = extract(filename);
    
    %objective function
    obj = @fmincon_obj
    
    %Define the upper and lower bounds
    lb = [66 124 5];
    ub = [90 150 27];
    
    %Define the equality constraints
    Aeq = [];
    beq = [];
    
    %Define the inequality constraints
    A = [];
    b = [];
    
    h0 = [50 50 20];
    freq = [];
    vol = [];
    
    for i=1:N
        %nonlinear constraints
        nonlcon = @quadcon;
        [h,fval,exitflag,output,lambda,grad,hessian] = ...
            fmincon(obj, h0, A, b, Aeq, beq, lb, ub, nonlcon);
        xval{i} = h;
        freq(i) = fmincon_con(h);
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        vol(i) = fmincon_obj(h);
        fstart = fstart + 20;
    end
    %disp(xval{2});
    %disp(freq);
    %plot(-freq, vol);
    %grid on;
end
 
%%%%%DEFINE THE NONLINEAR CONSTRAINTS FOR SUBSYSTEM%%%%%
function [c,ceq] = quadcon(h)
    global bf fstart
    c =  -1*fmincon_con(h) + fstart;
    ceq = [];
end
 
%%%%%DEFINE THE NONLINEAR CONSTRAINTS FOR ENTIRE SYSTEM%%%%%
function [c,ceq] = quadcon(h)
    global bf bt fcon tcon scon
    c(1) = -1*fmincon_conf(h) + fcon;
    c(2) = fmincon_cont(h) - tcon;
    c(3) = fmincon_cons(h) - scon;
    ceq = [];
end
 
%%%%%DEFINE THE OBJECTIVE FUNCTION%%%%%
function y1 = fmincon_obj(x)
    global bv
    y1 = 0;
    X = [x, x.^2, ones(1)];
    for i = 1:length(X)
        y1 = y1 + bv(i)*X(i);
    end
end
 
%%%%%DEFINE THE NONLINEAR CONSTRAINTS%%%%%
function c1 = fmincon_con(x)
    global bf
    c1 = 0;
    X = [x, x.^2, ones(1)];
    for i = 1:length(X)
        c1 = c1 + bf(i)*X(i);
    end
end
 
%%%%%DEFINE THE SUBSYSTEM OBJECTIVE FOR MOGA%%%%%
function y = MOGA_obj(x)
    global bf bv;
    y = zeros(2,1);
    %[x, bf, bv, f, v, R2f, R2v] = extract(filename);
    X = [x, x.^2, ones(1)];
    for i = 1:length(X)
        y(1) = y(1) + bv(i)*X(i);
        y(2) = y(2) + bf(i)*X(i);
    end
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    y(2) = -y(2);
end
 
%%%%%IMPLEMENT SYSTEM LEVEL MOGA%%%%%
function [xmoga, fmoga] = corr_algos_modal_thermal_structural(filename)
    clc;
    %[xfmin, lambda] = fmincon_algo(filename, fcon, tcon, scon);
    [xmoga, fmoga] = MOGA(filename);
end
 
%%%%%DEFINE SYSTEM LEVEL MOGA OBJECTIVE%%%%%
function y = MOGA_obj(x)
    global bf bv bt bs;
    y = zeros(4,1);
    %[x, bf, bv, f, v, R2f, R2v] = extract(filename);
    X = [x, x.^2, ones(1)];
    for i = 1:length(X)
        y(1) = y(1) + bv(i)*X(i);
        y(2) = y(2) + bf(i)*X(i);
        y(3) = y(3) + bt(i)*X(i);
        y(4) = y(4) + bs(i)*X(i);
    end
    y(2) = -y(2);
end
 
%%%%%IMPLEMENT THE MOGA ALGORITHM%%%%%
function [xval, fval] = MOGA(filename)
    global bf bv bt bs
    [x, f, v, t, s, R2f, R2v, R2t, R2s] = extract(filename);
    FitnessFunction = @MOGA_obj; % Function handle to the fitness function
    numberOfVariables = 3; % Number of decision variables
    lb = [66 124 5]; % Lower bound
    ub = [90 150 27]; % Upper bound
    A = []; % No linear inequality constraints
    b = []; % No linear inequality constraints
    Aeq = []; % No linear equality constraints
    beq = []; % No linear equality constraints
    options.PlotFcn = @gaplotpareto;
    options.TolFun = 1e-5;
    options.ParetoFraction = 0.5;
    %options.Generations = 1000;
    %options = optimset(@gamultiobj,'PlotFcn',@gaplotpareto);
    [xval,fval,exitFlag,Output] = gamultiobj(FitnessFunction, ...
        numberOfVariables,A,b,Aeq,beq,lb,ub,options);
    fprintf('The number of points on the Pareto front was: %d\n', ... 
        size(x,1));
    fprintf('The number of generations was : %d\n', Output.generations);
    %plot(freq, vol);
    %grid on;
end
 
 
 
 


