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Abstract 

 

Suspension system of a vehicle is the system of tires, tire air, springs 
and linkages that connects a vehicle to its wheels and allows relative motion between the 
two. Suspension systems control handling of the vehicle, comfort of the occupants and 
ride quality by isolating the vehicle from road noise, bumps, vibrations, etc. A vehicle 
needs to maintain a balance of all these goals, so the design of suspensions involves 
finding the right compromise.  

Project deals with the performance optimization of a suspension system of an off-road 
vehicle. Scope of this project is to deal with the performance parameters, controllability, 
durability, comfort and rolling resistance performance of tire. The overall system is 
divided into four individual subsystems which have their own objective functions and 
constraints and are optimized individually. 

The four subsystems considered are:  

1. Optimization of vertical acceleration of sprung mass 
2. Optimization of geometric parameters of the wishbone suspension system for 

vehicle performance improvement 
3. Minimization of the deformation to effectively reduce the tire rolling resistance 
4. Optimization of strain energy in the tire to improve the durability potential by 

varying the steel belt angles 
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Nomenclature and Symbols 

 

A  Road irregularity coefficient (��/(
���

�
)) 

B  Bound of mean square value of jerk (m/��) 
K  Suspension Stiffness (N/m) 
K�  Tire Stiffness (N/m) 
C  Damping force coefficient (N/m/s) 
f�    Suspension travel clearance (m) 
f�   Suspension static deflection (m) 
G  Tire ground Static Load (m) 
V  Vehicle speed (m/s) 
g  acceleration due to gravity (m/��) 
��  unsprung mass (Kg) 
��  sprung mass (Kg) 
P  Tire ground dynamic load (Kg) 
S(Ω) power spectral density of Road Profile (��) 
η  coefficient for bumping 
ξ  coefficient of acceleration 
Ω  Spatial Frequency (rad/m) 
z  vertical displacement of sprung mass (m) 

�̈
�
   mean square value of vertical acceleration of vehicle body �

�

��
�
�

 

�⃛
�
   mean square value of vertical jerk of vehicle body �

�

��
�
�

 

(�/�)��������  mean square value of relative tire-ground dynamic load 
 vertical displacement of un-sprung mass (m)  ל
q   elevation of road surface (m) 
a  length of DW (Double wishbone suspension) link MA (mm) 
b  length of DW suspension link AB (mm) 
c  length of DW suspension link BN (mm) 
d  length of DW suspension link MN (mm) 
θ�  orientation of link MN with respect to vertical (°) 
θ�  orientation of link MA with respect to link MN (°) 
θ�  orientation of link AB with respect to link MN (°) 
θ�  orientation of link BN with respect to link MN (°) 
θ�� initial angle that arm AB makes with MN when the DW suspension 

system is in a dynamic state of balance (°) 
A�  x-coordinate of point A in DW suspension system (mm) 
A�  y-coordinate of point A in DW suspension system (mm) 

B�  x-coordinate of point B in DW suspension system (mm) 
B�  y-coordinate of point B in DW suspension system (mm) 
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1. Subsystem 1: Optimization of Vertical acceleration of sprung mass 
(Suhail Jeet Singh) 

1.1 Problem Statement 
 

 The primary purpose of a suspension system of a vehicle is to ensure excellent ride comfort 
and good handling at all times, irrespective of the road irregularity. The road irregularity may be 
due to different sources such as potholes, bumps and non-uniformity of the tire/wheel assembly 
which acts as the major source of vibration of the sprung mass through the tire/wheel assembly 
and the suspension system. This is also important for the durability of the parts since increased 
vibrations wares out the parts of the suspension system.  

In this report we are going to concentrate mainly on reducing the vertical acceleration of a 
passive suspension system (which will be our objective function) with the dynamic tire load, 
rattle space and jerk as the constraints for the system. 

 

1.2 Assumptions made 
 

1. The road profile is considered the same on both the sides of the vehicle which follows the 
Gaussian distribution given by 

   S(Ω)= 
�

Ω�
  

Where the value of A (road irregularity coefficient) depends on the profile of the road  
 
Table1.1 Vehicle speeds and coefficient of road irregularities 
 Vehicle speed (m/s) A (��) 

Case 1 40 6.5×10�� 

Case 2 30 12×10�� 

Case 3 20 20×10�� 

  
 

2. The tire never leaves the ground 
3. Vehicle mass distribution coefficient is considered as constant 
4. The tire mass is lumped mass and the tire distributed stiffness to be concentrated stiffness 

and the tire damping is neglected  

Suspension damping is assumed to be viscous damping. The contact between suspension and 
the bumper is neglected since it is assumed that the distance between them is very large and the 
probability of contact is very small. 
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1.3 Modeling 
 

Figure 1 shows a simplified version of a passive suspension system of a quarter car model. 
Consists of a sprung mass ��, un-sprung ��, suspension damping C, spring stiffness K, Tire 
stiffness ��. We are going to develop the model in the form of a Non-linear programming 
problem which will be used in our optimization study 

 

The nominal values of the quarter car model for an off road vehicle are ��=98 Kg, ��=803 
Kg, ��=204394 N/m, K=63528 N/m, C=3428 (N/m/s)  

 

���̈+C(�̇ −  (1) …   0=(ל-z)K+(ל̇

 0     …(2)=(q-ל)��+̈���+ל̈��

 
Figure 1: Vehicle suspension model of a 2 DOF passive suspension 

 

Here we are going to describe the ride performance by the root mean square value of the 

vertical acceleration of the vehicle body by �̈. This will be our primary design criterion and the 
objective function to be minimized. 

i.e. minimize vertical body acceleration  �̈  

Performing Laplace transform on equations 1 and 2 we can evaluate the transfer function 
�̈

�
 

and from there we get the following equation  for the mean square value of vertical acceleration. 

�̈
�
 =�

���

��
� � ���� +

(�����)�
�

�
�   Objective function 

z 

 ל

q 
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Constraints: 

 

1. Relative dynamic Load:- We have made an assumption that the tire must never leave the 
ground but in fact some probability is represented in the time domain by the value of ��. 
This means that the road holding capability must not be above a certain value. 
Analytically this means. 

 

��� (�/�)��������� × ��
�� − 1 ≤ 0 

Where (�/�)��������� = �
���

��
� �

��

�
� ��

��

(�����)
−

�

��
�
�

+
��

����
+ �

�

��
�
� ��

��
� 

 

2. Rattlespace: - Since we have made the assumption that the bumper hitting in quarter 
quarter car model is very less, there is a need to limit the suspension travel in order to 
avoid that from happening. An empirical design to avoid this from happening is given by  

 

�� = 3��
�.� 

This leads to 

��� �
�

3�
� �
���

2
�
�.�

�
����

�(�� + ��)
+ ��

��.�

− 1 ≤ 0 

 The value of η and ξ are associated with bumper hitting and cargo throwing which can be 
selected as η=3 and ξ=2 for off road vehicles. 

3. Jerk: - In the recent study it has been suggested that jerk also plays a vital role in 
determining the comfort level of the passenger and for that very purpose we have 
included it as the third constraint. For passenger comfort according to ISO 2631 standards 

jerk should not be more than  18 
�

��
 

��� �
���

��
� ��

��
��

��
+
���

�

�
� − � ≤ 0 

We can include additional constraints to our objective function but in this report we will 
concentrate on the major constraints given above. As mentioned earlier we will try and minimize 
the acceleration of the sprung mass with the above given design constraints. The design variables 
are chosen as ��,   ��,��, K, C and the design parameters are chosen as A and V 

 
 

 

 

Minimize �̈
�
 =�

���

��
� � ���� +

(�����)�
�

�
�  
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Subjected to constraints below 

 

�
���

��
� �
��

�
� ��

��
(�� + ��)

−
�

��
�
�

+
��

����
+ �

�

��
�
� ��
��

� ≤ �� 

�
�

3�
� �
���

2
�
�.�

�
����

�(�� + ��)
+ ��

��.�

≤ 1 

�
���

��
� � �

��
��

��
+

���
�

�
� ≤ �                  

78.4 ≤ �� ≤ 117.6 

642.4 ≤ �� ≤ 963.6 

163515.2 ≤ �� ≤ 245272.8 

50822.4 ≤ � ≤ 76233.6 

2742.4 ≤ � ≤ 4113.6 

 

In equation 3 the values of b� is chosen as 0.27 and the value of B is taken as 18 
�

��
  

 

 

1.4 Optimization Study 
 

 

The optimization study is done in Matlab using SQP algorithm through fmincon. The initial 
guess points i.e. x� is taken as  

��=98 Kg, ��=803 Kg, ��=204394 N/m, K=63528 N/m, C=3428 (N/m/s)., V=40(m/s) 

A=6.5× 10�� (��/(
���

�
)), B= 18

�

��
, ��= 0.27 

 
x0= [98; 803; 204394; 63528; 3428]; 
 

Table1.2. Optimum values obtained through SQP 
 �� �� �� K C 

Optimum 
Values × 10� 

0.0011 0.0096 1.6352 0.5082 0.0274 

 

Optimum value of acceleration = 1.2903  
�

��
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The above answers obtained are the optimum solution for our design variables with the given 

set of constraints and bounds. The below figures show the relationship of the sprung mass 
acceleration with the 5 design variables. 

 

 
Figure 1.2 : Sprung mass acceleration vs �� 

 

 
Figure 1.3: Sprung mass acceleration vs �� 
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Figure 1.4: Sprung mass acceleration vs � 

 
 

Figure 1.5: Sprung mass acceleration vs � 
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Figure 1.6: Sprung mass acceleration vs �� 
 
 
It can be seen from the graph that there is only one global optimum point as all design 

variables are either strictly increasing or decreasing with respect to the sprung mass. 

By calculating the corresponding natural frequencies of the sprung and unsprung mass it was 
found that the sprung mass natural frequency was reduced to 0.366 Hz from the baseline 
frequency of 1.41 Hz and the unsprung mass natural frequency reduced to 5.94 Hz from 7.3Hz.It 
can also been seen that the Spring stiffness and the tire stiffness have also reduced from its 
baseline frequency. These results show that the optimum results obtained indeed increase the ride 
quality  

 

 

1.5 Parameter Study 
 

In this section we will be analyzing the effects of changing the important parameters of the 
design and we will see how these change in parameters effect the objective function and if we 
can deduce any relationship between them. 
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       Table1.3 Change in Sprung acc by changing system parameters 
Parameter to change Value Sprung Mass Acceleration 

�

��
 

Road 
irregularity 
coefficient 

 

A(��/(
���

�
)) 

6.5× 10�� 1.2903 

12× 10�� 2.23821 

20× 10�� 3.9701 

 

Jerk 

 

B 
�

��
 

18 1.2903 

24 1.1050 

50 1.0060 

 

Velocity 

 

V
�

��
 

40 1.2903 

30 0.9677 

20 0.6451 

 

It can be seen from the above table that with the increase in the value of road irregularity 
coefficient and velocity the RMS acceleration increases. Similarly with the increase in jerk there 
is a very slight increase in the RMS acceleration. 

 

1.6 Conclusion 
 

It can be seen that the results obtained by using the SQP algorithm through fmincon in 
Matlab optimizes the sprung mass, un sprung mass, spring stiffness, tire stiffness and suspension 
damping coefficient for given set of constraints given by Rattle space, Dynamic tire load and 
Jerk. The values obtained lie within the bounds specified at the beginning. We have also seen 
how different important design parameters such as Jerk, Velocity and road irregularity 
coefficient effect the RMS acceleration of the sprung mass.  

 

 

2. Subsystem 2: Optimization of geometric parameters of the wishbone 
suspension system for vehicle performance improvement  
 (Vrushali Manka) 

 

2.1 Problem Statement   
 

We are considering the suspension system of an off-road vehicle. During the motion of a 
vehicle, it encounters irregularities on the road, which can damage the components of the 
vehicle. To avoid this, vehicles have suspension systems. Suspension provides ride comfort to 
the driver and handling stability to the vehicle. Geometric parameters of the suspension system 
affect the camber greatly, which in turn affects the ride and handling characteristics by allowing 
the tires of the vehicle to maintain sufficient contact with the road. Here we are going to use the 
same concept and optimize the camber angle to improve the performance of the vehicle. 
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There are different kinds of suspension systems like MacPherson, Wishbone and Double 
Wishbone suspension system. We are considering the double wishbone suspension system for 
this off-road vehicle. 

 
Fig. 2.1 Double Wishbone System [19] 

The Fig. 2.1 depicts the double wishbone system, which looks like two A-arms connected at 
ends. It is also called an A-arm suspension system. There are many advantages of the DW 
suspension design. The lengths of upper and lower arms of this system are unequal. Due to this, 
the vertical suspension movement results in an increase in negative camber. So, during the turn, 
the outer tires do not lose contact with the road. In this system, the camber changes as the car 
rolls or takes a turn. In other systems, initial negative camber has to be provided, due to which 
the tires will be in negative camber even when the vehicle is moving straight. This causes the 
tires to wear. Thus, we are optimizing the double wishbone suspension system in this subsystem. 

 

2.2 Modeling 
The Fig. 2 shows the schematic diagram of this suspension system. 

 
  Fig. 2.2 Schematic diagram of DW suspension system 
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2.2.1 Objective of the optimization problem 

 

Camber angle here is θ� − θ�� 

Lengths and orientations of the links of the suspension system are the variables of the 
optimization problem. To formulate the objective of this problem, relation between the camber 
angle and other geometric parameters had to be determined. The calculations performed are as 
follows, 

Point M in the figure is considered as the origin for the system, and Cartesian coordinates of 
all other points are determined according to this. So, 

�� = 0 

�� = 0 

�� = acos (�� − �� − 90) 

�� = asin (�� − �� − 90) 

�� = −dsin(��) 

�� = −dcos(��) 

�� = ccos (�� − �� − 90)− ������ 

�� = csin (�� − �� − 90)− ������ 

tan (�� − ��)=
�� − ��
�� − ��

 

�� = �� − �����(
�� − ��

�� − ��
) 

This equation provides the variation in camber angle. Objective is to minimize the value of 
θ�. So the above equation is the objective of this subsystem. 

 

2.2.2 Constraints 

 

The double wishbone system is actually a four bar linkage.  And here the system is triple 
rocker, so this is a Non-Grashof four bar linkage. This gives us the following relation, 

� + � ≥ � + � 

� ���(��)+ ����(��)− ����(��)− � = � 

� ���(��)+ ����(��)− ����(��)− � = � 

For a double wishbone suspension system, considering the more efficient system called 
short-long arm suspension, it can be said that, 

a≤ c 

From the geometry as shown in the Fig. 2, the following relation is obtained, 

� ���(�� − ��− ��)− [����(�� − ��− ��)] = ����(�� − ��)− ������ 

ϴ� is included in this constraint equation, as can be seen from the above equation. So, while 
solving the optimization problem, we have to solve the simultaneous equations, objective and 
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this constraint for finding the values of both  θ� and θ�. This is calculated with the help of 
MATLAB function fsolve. 

From force equilibrium,  

�� = ��� 

Y-component of Fs, 

��� = 0.5�����(�� − 90− ��) 

Force due to the total weight of the vehicle on one wheel is, 

� =
��

4
 

For equilibrium in y- direction, 

� = �����(�� − 90− ��)= ��� 
��

2
= 0.5�����(�� − 90− ��) 

Here the values of mass (m) and stiffness (K) are obtained from the previous subsystem’s 
results.  

Moment equilibrium, 

�� �
�

2
� = �(����(�� − 90− ��)+ �) 

��� sin(�� − 90− ��)

4
=
��

4
(����(�� − 90− ��)+ �) 

��� ���(�� − ��− ��)= ��(����(�� − ��− ��)+ �) 

The equations in bold letters are the constraints used in optimization problem. 
 

2.2.3 Bounds 

 

The bounds for the variables have been obtained from the dimensions of a general ATV 
(Auto Terrain Vehicle).  The bounds are listed below, 

� ≤ � (��)≤ ��� 

� ≤ � (��)≤ ��� 

� ≤ � (��)≤ ��� 

� ≤ � (��)≤ ��� 

�� ≤ �� (°)≤ ��� 

� ≤ ��(°)≤ �� 

�� ≤ ��(°)≤ ��� 

�� ≤ ��(°)≤ �� 
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2.3 Optimization Study 
 

Now, the objective function was initially checked for Monotonicity with respect to the 
variables in MATLAB by plotting the function with respect to the variables one by one 
considering a fixed point in the domain of these variables. The following plots were obtained, 

 
Fig. 2.3 Plot of �� versus a 

 
Fig. 2.4 Plot of �� versus b 
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Fig. 2.5 Plot of �� versus c 

 
Fig. 2.6 Plot of �� versus d 
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Fig. 2.7 Plot of �� versus �� 

 
Fig. 2.8 Plot of �� versus �� 



 16 

 
Fig. 2.9 Plot of �� versus �� 

As can be seen, the objective is non-monotonic with respect to some of the variables. So, a 
proper method for solving this optimization problem can be MATLAB’s function fmincon with 
SQP algorithm. 

 

2.4 Results and Discussion:  
After solving by fmincon, the following results were obtained for different initial conditions, 
 

  Table no. 2.1 Optimized geometric parameters of suspension considering different initial points 

Sr. no. a b c d       ��        ��        �� ��(*) 

1 150 150 270 150 100 20 110 20.7916 

2 150 150 270 150 100 20 115 22.8526 

3 151 151 271 151 101 21 116 24.546 

4 153 153 273 153 103 23 113 23.5319 

5 156 156 276 156 106 26 116 26.5763 

6 148 148 268 148 98 18 108 18.8900 

 

It can be observed from the above table, that the minimum value for the objective function 
that is the variation in camber, obtained is 18.89°. So the values of the parameters obtained from 
this optimization are as follows, 
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Table no. 2.2 Optimum results of geometric parameters of Suspension 

a b c d �� �� �� ��(*) 

193 143.4 292.9 159.8 97.59 18.88 107.33 18.89 

 
So, we can conclude from the above results obtained that the optimum variation in camber angle 
is 18.890 and this can be achieved by implementing the corresponding optimized geometric 
parameters as mentioned. This will increase the area of contact of tire with the road and 
eventually increase controllability and stability of the vehicle. 

 

3. Subsystem 3 : Minimizing the Rolling Resistance of the tire 
 (Aniket Borude) 

 

3.1  Introduction 

 

Rolling Resistance is the resistive force to the motion of a body rolling on a surface. The two 
main causes of rolling resistance are hysteresis losses and permanent plastic deformation. In the 
case of tires, there is no permanent plastic deformation but the hysteresis losses are prevalent. 
The hysteresis losses occur due to the constant loading and unloading over the body. Tires are 
such parts where the weight of the vehicle acts over the circumference of the rubber in a cycling 
manner. This causes hysteresis losses in the tire. The losses due to hysteresis also depend 
strongly on the material properties of the wheel or tire and the surface 

Hysteresis losses are reduced by reducing the area between the loading and unloading curve 
in the stress strain diagram. This can be achieved by reducing the deformation in the tire when 
the tire is loaded. Hence, effectively the objective of this subsystem is to reduce the deformation 
in the tire when the tire is loaded.  

 

3.2 Finite Element Model 
 

The model of the tire was created in ANSYS Design Modeler. Since the tire is a part which is 
symmetric about an axis, the type of analysis that can be conducted on it can be of axisymmetric 
type. Sometimes there are parts in which the geometry and shape, the forces acting on the body 
and its constituent material are symmetric about a single axis. In these cases, the part can be 
solved as an axisymmetric problem. The advantage of this analysis is that the entire body of the 
tire need not be analyzed. A suitably short cross section can be chosen and the boundary and 
loading conditions can be applied to it to solve the problem. 

The material chosen for the tire rubber is Styrene-Butadiene Rubber. Styrene-Butadiene[23] 
rubber is used in tires of off road vehicles. Natural rubber which is used on normal cars does not 
have the abrasion resistance capacity as styrene-butadiene rubber. The material properties of 
styrene-butadiene rubber are given in the table 
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Table 3.1 Material Properties of the rubber material 

Material Property Value 

Density 950 kg/m3 

Shear Modulus 3.3 MPa 

Poisson’s Ratio 0.45 

Young’s Modulus 9.57 MPa 

Bulk Modulus 31.9 MPa 

 

 

 

 
Fig 2.1 Geometry of the tire cross section 

 

 

 
Fig 2.2 Meshed Geometry 
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3.3 Structural Analysis 
 

ANSYS Static Structural Analysis was used to conduct the structural analysis on the part. 
The tire when loaded vertically due to the weight of the vehicle undergoes deformation in the 
vertical direction. Hence the major force acting on the tire geometry is the weight of the vehicle 
which is obtained from subsystem 1. Boundary conditions are applied to the lower part of the tire 
geometry cross section where a fixed support exists in the form of underformable surface of the 
road where the tire rests. The loads and the boundary conditions were applied to the tire 
geometry as shown in the figure. 

 

 
Fig 2.3 Force acting on the surface 

 

Upon solving the structural analysis in ANSYS the deformation value is achieved. The 
geometry after deformation denotes that the deformation is primarily concentrated on the upper 
surface of the rubber material. This is the deformation that needs to be minimized to reduce the 
rolling resistance in the tire. The deformation in the tire is as shown in the Figure 2.4 

 

 
Fig 2.4 Deformed Tire Cross section 

 

The Maximum stress value in the tire after loading (0.2195 MPa) is well below the yield and 
ultimate stress value for the rubber material. Hence the design is safe for work as well. 
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Fig 2.5 Stresses induced in the tire material  

 

3.4 Design of Experiments 
 

As a part of this project, a study has to be conducted how the output of the system, in this 
case the deformation of the tire is related to the input. The input in this case was the thickness of 
the rubber material and the shear modulus of the tire material. The thickness directly impacts the 
deformation in the tire because it is the parameter on which the load acts. Also, when the tire is 
in loading, the tire cross section is subjected to a shear force due to the weight of the tire. For this 
study the shear modulus of the tire is taken into account which denotes the shear strength of the 
material. The deformation in the tire depends on its shear strength which is dictated by the shear 
modulus 

Hence, the two parameters which are taken into consideration are the thickness of the tire and 
the shear modulus of styrene-butadiene which is the material chosen for the tire. 

The Design of Experiments type used was Latin Hypercube Sampling. Latin hypercube 
sampling (LHS) is a statistical method for generating a sample of plausible collections of 
parameter values from a multidimensional dimensions. In this case, the number of simulations 
required are independent from input parameters. The Design of Experiments was carried out for 
50 points which is included in the Appendix C. 

 

3.5 Response Surface 
 

The Design Points and their solutions are obtained in the Design of Experiments step. Upon 
achieving the required results, a response surface is fitted across the results. Kriging model was 
used to create a response surface. The response surface provides a variation of the output 
parameters with respect to the changing input parameters. The response surface obtained is as 
shown in the Figure 2.6. 
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Fig 2.6 Response surface 

 

The two parameters, thickness (inner radius in the figure) of the rubber and shear modulus of 
the tire are on the X and Z axes respectively. The output of Deformation in the tire is plotted 
along the Z axis. Further using this response surface, the optimization is carried out. 

Figure 2.7 shows the goodness of fit plot. On the X axis the values of maximum deformation 
(red) and the maximum shear stress (blue) are plotted which are observed from the design points. 
Similarly along the Y axis the values of maximum deformation and maximum shear stress are 
plotted which are obtained from the response surface. 

 

 
Fig 2.7 Goodness of fit 
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3.6 Optimization 
 

Objective of the study is to minimize the total deformation in the tire. Hence the value of 
deformation from the structural analysis was entered as an output parameter. In ANSYS, the 
objective of the optimization study was assigned as to minimize the total deformation in the tire. 
The optimization algorithm used was MISQP (Mixed Integer Sequential Quadratic 
Programming). 

Upon conducting the optimization study, a set of best candidate points were selected as 
shown in Figure 2.8 

 

 
Fig 2.8 Candidate Points 

 

3.7 Results 
 

The Optimization study conducted using ANSYS yielded three candidate points. The 
candidate point number three was selected from the set of candidate points since this is the point 
which will require the least amount of material since the thickness is the least. The results 
obtained are verified and the variation of it from  

 

4. Subsystem 4: Optimization of Strain Energy in the tire to improve 
the durability potential by varying the steel belt angles  
 (Gaurav Kankriya) 

 

4.1 Introduction 
 

Tire is the only member in contact with both the vehicle and the road. Due to this fact, it has 
to meet many designing requirements of absorbing the road irregularities, Support the moving 
vehicle, reducing the shocks along with providing braking or steering control. So, the product 
life as well as mileage and environmental concerns majorly depend upon tire performance 
characteristics that are wear, durability and rolling resistance. Tire is made by reinforcing the 
series of plies of cords. This improves the strength and rigidity of the tire. This network that 
gives tire its shape is called the carcass. To improve further rigidity, steel belts are placed inside 
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the tire body. Radial plies are placed at right angles to the direction of motion.  Due to this 
design, plies do not rub against each other as tire flexes, thus reducing the rolling resistance. But 
with only this arrangement, tire would not be sufficiently rigid at the contact with the ground. To 
provide further stiffness, additional belts oriented closer to the direction of travel are added. 
These belts are made up of steel and blended with the polyester. The orientation of these belts is 
an important design criteria.  The figure 4.1 shows the cross-section view of the radial tire. 

 

 
Figure 4.1 Cross Section of Radial Tire 

While running, the tire is under continuous delta of loading and unloading cycle. The tire 
durability and the rolling resistance significantly depends upon the energy dissipated by the tire 
while running. The energy distribution around cross section of tire play vital role in tire 
durability. When tire comes in contact with the road, there is a deformation of tread block and 
thus tire components get strained and are relaxed while leaving the contact from road. This 
continuous cycle of loading and unloading introduces a delta of strain. This strain can be 
measured in terms of strain energy distribution. This generated strain energy has to be distributed 
and dissipated properly, otherwise it builds the heat inside the tire and eventually reduces the 
rubber mechanical properties. This makes tire more vulnerable to failure. Therefore, it is very 
important to consider this strain energy and optimize the same to have longer tire life. Tire being 
a very nonlinear in structure, it is very difficult to strike the balance between different 
parameters. So, optimizing the strain energy is very important. So, this study is focused on the 
steel belt angles and the variation of these belt angles to minimize the strain energy distribution 
around the tire cross section. 

4.2 Optimization Procedure 
 

The flow chart for performing the optimization operation on the given system is shown in 
figure 4.2  
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Figure 4.2 Optimization Procedure 

 
 

4.3 Optimization Problem 
 

The objective of this study is to optimize the strain energy distribution across the cross section of the 
tire by varying the steel belt angle1 and steel belt angle2. Here the angles are represent by the angles 
made by the plane containing the steel wire with the tire cross section planes. 

 

 
       Figure 4.3 Steel Belt Angles  

Steel Belt angle 1 Steel Belt angle 2 
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4.4  Finite Element Model 
 

The tire is a very non-linear and complex part to design and examine. In order to simplify the 
problem, a 1/80 model of the actual tire model is designed. Taking advantage of tire symmetry, 
only half axisymmetric model is prepared. So, the 1/80 axisymmetric model is described in 
figure 4.4. The steel belts are rolled inside the tire rubber body. When the 1/80 model of tire is 
under consideration, the angle subtended at the center by the tire arc is 360/80 i.e. 4.5 degrees.  
So the tire arc can be approximated as a straight line and hence an approximated model of a tire 
is created as follow. Here, the angles subtended by steel wires with the cross section plane 
(Steel_belt_angle1 & Steel_belt_angle2) are considered as parameters. 

Initially belt angles of 23 degrees and -23 degrees are provided in the model. 
 

 
Figure 4.4 1/80 axisymmetric Tire Model  
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Figure 4.5 Steel Belt orientation 

 
The detailed view of the steel wire orientations is described in figure 4.5. The CAD model is 

then meshed using tetrahedral quadratic elements. The computation time for mesh generation is 
very high therefore localized fine meshing is implemented and is shown in figure 4.6. 

 

 
Figure 4.6 Localized mesh of Model 

 
 
 
 
Material Properties: 
There are basically three different bodies in the tire model. The outer tire body and the rubber 

material inside the steel wire are made up of styrene-butadiene rubber. The streel wires inside the 
steel belts are made up of High Carbon Steel. The important material properties can be 
summarize as follow: 
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Table 4.1 styrene-butadiene rubber properties 

Material Property Value 

Density 950 kg/m3 

Shear Modulus 3.3 MPa 

Poisson’s Ratio 0.45 

Young’s Modulus 9.57 MPa 

Bulk Modulus 31.9 MPa 

 

Table 4.2 High Carbon Steel properties 

Material Property Value 

Density 7850 kg/m3 

Shear Modulus 7692.3 MPa 

Poisson’s Ratio 0.3 

Young’s Modulus 200000 MPa 

Bulk Modulus 166667 MPa 

 

 

 

 

4.5  Structural Analysis 
 

Generally the inflation pressure of an ATV tire is around 0.1-0.2 MPa. So an inflation 
pressure of 0.1 MPa is applied to the inner face of the tire. It is assumed that the vehicle weight is 
shared equally by the tires. So, the vehicle weight is taken from the first subsystem and from the 
data then an equivalent load of 428.75N was applied at the tire surface in contact with the road. 
The rim and the road surface are analytically modelled as rigid bodies. Also, the symmetric 
condition is applied at the mid plane of the tire as shown in figure 4.7. 

 

 
Figure 4.7 loading and Boundary conditions 
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After applying these loading and boundary conditions, the model is solved for the deflection 

in Y direction, and the strain energy distribution 

 

4.6 Design of Experiments 
 

After performing an initial analysis on the tire with the above set conditions, the relation 
between the design parameters and the response parameters is determined. For accurate relation 
between the input and output parameters, the same analysis has to be run with different initial 
design variables. So, this can be achieved with the help of Design of experiments. In this method, 
the analysis is run for different set of random input conditions and corresponding output 
parameters are recorded. For generating random set of points, Latin Hypercube Sampling (LHS) 
is implemented. User defined sample points are used to generate the response surface. 
Considering the complexity of the model and the computation time, the DOE is performed for 30 
sampling points. The advantage of using the LHS over other sampling is that it spreads the 
sample points more evenly across all possible values. It also shuffles the sample for each input to 
avoid the correlation between inputs. Also, the number of simulations required are independent 
of number of input parameters. So, it is advantageous to use LHS over other DOE sampling 
methods. After performing the DOE, we get response parameters for different sampled initial 
conditions. The DOE points are listed in the Appendix D. 

 

 

 

 

4.7  Response Surface 
 

After performing the DOE, a response surface is generated using the Kriging model for all 
the DOE points. Kriging model helps to compensate for effect of data clustering also gives an 
estimate of the error estimation. The optimization is then performed on the response surface 
generated using he model. Goodness of fit is evaluated for the given response curve and is shown 
in the figure 4.8. 

 

 
Figure 4.8 Goodness of fit 
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4.8  Structural Optimization 
 

The response parameter of strain energy density is considered as an objective function which 
is to be minimized. A variation of optimal strain energy and other parameters is plotted using the 
MISQP (Mixed-Integer Sequential Quadratic Programming) algorithm. As seen in figure 4.9, it 
is quite evident from the sensitivity analysis that variation of both the parameters affect the 
response surface. The optimum candidate points are obtained using the MISQP algorithm in 
ANSYS. The best candidate point is chosen from the set of verified candidate points given by 
ANSYS optimization solver. 

 
Figure 4.9 Sensitivity Analysis 

 

4.9  Results  
 

After performing the complete optimization procedure, the ANSYS results are summarized 
in the form of three different Candidate points. Candidate points are the best possible solutions 
found by the ANSYS solver and are listed in figure 4.10.So, it is now our decision to choose the 
best candidate point satisfying all our requirements. Result obtained well within the bounds 
given to parameters is considered as a good solution. Keeping this into mind, the candidate point 
2 is selected as the optimum solution for the given minimization problem. 

 

Figure 4.10 Candidate Points 
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The optimization results can be summarized as follows: 

 

Table 4.3 Optimization Results 

Parameters Initial Condition Optimized Condition 

Steel Belt Angle 1(degree) 23 24.242 

Steel Belt Angle 2(degree) 23 -22.192 

Strain Energy Distribution 
(mJ) 

0.012 0.00730 

 

The strain energy reduces significantly after optimizing the steel belt angles. This reduced strain 
energy distribution ensures the improved durability of the tire. 

 

5.  System Integration 

 

As we know that the suspension system under consideration is made up of the double wishbone 
suspension system and tire. So, when all the systems are optimized individually, the results must be 
integrated together for optimizing the suspension system performance.  

The first subsystem deals with optimizing the vertical acceleration of the vehicle where with the 
sprung mass, unsprung mass and the spring stiffness being important parameters. Optimizing the vertical 
acceleration of the vehicle ensures better control. So, the optimal value of the sprung mass and spring 
stiffness are used as input parameters in the second subsystem and using these parameters along with 
other geometric parameters of the double wishbone system, the variation in the camber angle is optimized 
thus improving the controllability of the vehicle. As the tire is the only contacting element between the 
road and the vehicle, its performance optimization is very important. The total vehicle mass from the first 
subsystem is used as an input to the third and the fourth subsystem. The rolling resistance performance of 
the tire is optimized by optimizing the tire thickness and shear modulus of the rubber. The strain energy 
distribution is optimized in the fourth subsystem by effectively optimizing the steel belt angles of the tire 
improving the durability of the tire.  

So, putting together all the subsystem optimization results, we can say that the comfort, controllability 
of vehicle and rolling resistance performance and the durability of the tire are optimized in this report, 
leading to the improved suspension system performance of an off-road vehicle. 
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7. Appendix 

A. Subsystem 1 
Matlab Code for Subsystem 1 
Code for main function 

A= []; 
b= []; 
x0= [98; 803; 204394; 63528; 3428]; 
Aeq= []; 
beq= []; 
lb= [78.4 642.4 163515.2 50822.4 2742.4]; 
ub= [117.6 963.6 245272.8 76233.6 4113.6]; 
options=optimoptions('fmincon','Display','iter','Algorithm','sqp'); 
[x, fval]= fmincon(@camber, x0, A, b, Aeq, beq, lb, ub, @const,options) 

Code for Constraints 

function [c, ceq] = const(x) 
m1=x(1); 
m2=x(2); 
Kt=x(3); 
K=x(4); 
C=x(5); 
V=40; 
A=6.5*10^-6; 
g=9.81; 
B=40; 
 
 c=[pi*A*V/(g^2)*m1/C*((Kt/(m1+m2)-K/m2)^2+K^2/(m1*m2)+C^2*Kt/(m2^2*m1)) - 
0.27;... 
    0.5*(sqrt((m2*g)))*(C^2*Kt/(K*(m1+m2))+K)^(-1/2)- 1;... 
             (pi*A*V/(m2^2))*(C*Kt*Kt/m1+(Kt*K^2)/C) - B]; 
ceq= [] 

 

Code for objective Function 

function sigmaz= camber(x) 
m1=x(1); 
m2=x(2); 
Kt=x(3); 
K=x(4); 
C=x(5); 
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A=6.5*10^-6; 
g=9.81; 
V=40; 
sigmaz=pi*A*V/(m2^2)*(Kt*C+(m1+m2)*(K ^2)/C); 

 
B. Subsystem 2 
1. Code to check monotonicity: 

When a is considered as the variable 

for a=0:1:500 
% a= 193; 
b= 143.4; 
c= 292.9; 
d= 159.8; 
th2= 97.59; 
th0= 18.88; 
th4= 107.33; 
Ax= a*cosd(th2-th0-90); 
Ay= a*sind(th2-th0-90); 
Nx= -d*sind(th0); 
Ny= -d*cosd(th0); 
Bx= c*cosd(-th4+th0+90)-d*sind(th0); 
By= -(Ay+c*sind(-th4+th0+90)+d*cosd(th0)); 
theta3= th0+atand((Ax-Bx)/(Ay-By)); 
figure (1) 
plot(a,theta3,'.') 
hold on 
end 
xlabel('a (mm)') 
ylabel('theta3 (Degrees)') 
% end 

 

When b is considered as the variable 

for b=0:1:300 
a= 193; 
% b= 143.4; 
c= 292.9; 
d= 159.8; 
th2= 97.59; 
th0= 18.88; 
th4= 107.33; 
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Ax= a*cosd(th2-th0-90); 
Ay= a*sind(th2-th0-90); 
Nx= -d*sind(th0); 
Ny= -d*cosd(th0); 
Bx= c*cosd(-th4+th0+90)-d*sind(th0); 
By= -(Ay+c*sind(-th4+th0+90)+d*cosd(th0)); 
theta3= th0+atand((Ax-Bx)/(Ay-By)); 
figure (2) 
plot(b,theta3,'.') 
hold on 
end 
xlabel('b (mm)') 
ylabel('theta3 (Degrees)') 

 

When c is considered as the variable 

for c=0:1:350 
a= 193; 
b= 143.4; 
% c= 292.9; 
d= 159.8; 
th2= 97.59; 
th0= 18.88; 
th4= 107.33; 
Ax= a*cosd(th2-th0-90); 
Ay= a*sind(th2-th0-90); 
Nx= -d*sind(th0); 
Ny= -d*cosd(th0); 
Bx= c*cosd(-th4+th0+90)-d*sind(th0); 
By= -(Ay+c*sind(-th4+th0+90)+d*cosd(th0)); 
theta3= th0+atand((Ax-Bx)/(Ay-By)); 
figure (3) 
plot(c,theta3,'.') 
hold on 
end 
xlabel('c (mm)') 
ylabel('theta3 (Degrees)') 

 

When d is considered as the variable 

for d=0:1:300 
a= 193; 
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b= 143.4; 
c= 292.9; 
% d= 159.8; 
th2= 97.59; 
th0= 18.88; 
th4= 107.33; 
Ax= a*cosd(th2-th0-90); 
Ay= a*sind(th2-th0-90); 
Nx= -d*sind(th0); 
Ny= -d*cosd(th0); 
Bx= c*cosd(-th4+th0+90)-d*sind(th0); 
By= -(Ay+c*sind(-th4+th0+90)+d*cosd(th0)); 
theta3= th0+atand((Ax-Bx)/(Ay-By)); 
figure (4) 
plot(d,theta3,'.') 
hold on 
end 
xlabel('d (mm)') 
ylabel('theta3 (Degrees)') 

 

When theta2 is considered as the variable 

for th2=90:0.1:160 
a= 193; 
b= 143.4; 
c= 292.9; 
d= 159.8; 
% th2= 97.59; 
th0= 18.88; 
th4= 107.33; 
Ax= a*cosd(th2-th0-90); 
Ay= a*sind(th2-th0-90); 
Nx= -d*sind(th0); 
Ny= -d*cosd(th0); 
Bx= c*cosd(-th4+th0+90)-d*sind(th0); 
By= -(Ay+c*sind(-th4+th0+90)+d*cosd(th0)); 
theta3= th0+atand((Ax-Bx)/(Ay-By)); 
figure (5) 
plot(th2,theta3,'.') 
hold on 
end 
xlabel('theta2 (Degrees)') 
ylabel('theta3 (Degrees)') 
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When theta0 is considered as the variable 

for th0=0:0.1:45 
a= 193; 
b= 143.4; 
c= 292.9; 
d= 159.8; 
th2= 97.59; 
% th0= 18.88; 
th4= 107.33; 
Ax= a*cosd(th2-th0-90); 
Ay= a*sind(th2-th0-90); 
Nx= -d*sind(th0); 
Ny= -d*cosd(th0); 
Bx= c*cosd(-th4+th0+90)-d*sind(th0); 
By= -(Ay+c*sind(-th4+th0+90)+d*cosd(th0)); 
theta3= th0+atand((Ax-Bx)/(Ay-By)); 
figure (6) 
plot(th0,theta3,'.') 
hold on 
end 
xlabel('theta0 (Degrees)') 
ylabel('theta3 (Degrees)') 

 

When theta4 is considered as the variable 

for th4=90:0.1:120 
a= 193; 
b= 143.4; 
c= 292.9; 
d= 159.8; 
th2= 97.59; 
th0= 18.88; 
% th4= 107.33; 
Ax= a*cosd(th2-th0-90); 
Ay= a*sind(th2-th0-90); 
Nx= -d*sind(th0); 
Ny= -d*cosd(th0); 
Bx= c*cosd(-th4+th0+90)-d*sind(th0); 
By= -(Ay+c*sind(-th4+th0+90)+d*cosd(th0)); 
theta3= th0+atand((Ax-Bx)/(Ay-By)); 
figure (8) 
plot(th4,theta3,'.') 
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hold on 
end 
xlabel('theta4 (Degrees)') 
ylabel('theta3 (Degrees)') 

 

Code for fmincon 

A= [1 0 -1 0 0 0 0 0; 1 -1 -1 1 0 0 0 0]; 
b= [0;0]; 
x0= [0.148; 0.148; 0.268; 0.148; 98; 18; 108; 18]; 
Aeq= []; 
beq= []; 
ub= [0.5 0.3 0.35 0.3 160 45 120 30]; 
lb= [0 0 0 0 90 0 90 10]; 
options = optimoptions('fmincon','Display','iter','Algorithm','sqp','TolCon',1e-1); 
[x, fval,exitflag]= fmincon(@camber, x0, A, b, Aeq, beq, lb, ub, @const, options) 

 

Objective Function 

function theta3= camber(x) 
Ax= x(1)*cosd(x(5)-x(6)-90); 
Ay= x(1)*sind(x(5)-x(6)-90); 
Nx= -x(4)*sind(x(6)); 
Ny= -x(4)*cosd(x(6)); 
Bx= x(3)*cosd(-x(7)+x(6)+90)-x(4)*sind(x(6)); 
By= -(Ay+x(3)*sind(-x(7)+x(6)+90)+x(4)*cosd(x(6))); 
th = [18,111]; 
fun = @(th)equation(th,x); 
theta = fsolve(fun,th); 
theta4= theta(2); 
Bx= x(3)*cosd(theta4-x(6)-90)-x(4)*sind(x(6)); 
By= x(3)*sind(theta4-x(6)-90)-x(4)*cosd(x(6)); 
theta3= x(6)+90+atand((Ax-Bx)/(Ay-By)); 

 

Code to solve the simultaneous equations 

function F= equation(th,x) 
Ax= x(1)*cosd(x(5)-x(6)-90); 
Ay= x(1)*sind(x(5)-x(6)-90); 
Nx= -x(4)*sind(x(6)); 
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Ny= -x(4)*cosd(x(6)); 
Bx= x(3)*cosd(-x(7)+x(6)+90)-x(4)*sind(x(6)); 
By= -(Ay+x(3)*sind(-x(7)+x(6)+90)+x(4)*cosd(x(6))); 
F(1)= th(1)-90-x(6)-atand((Ax-Bx)/(Ay-By)); 
F(2)= -x(4)*cosd(x(6))+x(2)*cosd(x(6)-th(1))-x(3)*sind(90-th(2)+x(6))+x(1)*sind(x(5)-90-
x(6)); 

Constraints 

function [c, ceq] = const(x) 
w= 230/2; 
k= 76230; 
g= 9.81; 
m= 890; 
c= [-m*g/2+k*x(3)*sind(x(7)-90-x(6));... 
k*x(3)^2*sind(x(7)-90-x(6))-m*g*(x(3)*cosd(x(7)-90-x(6))+w)]; 
ceq= [x(1)*cosd(x(5))+x(2)*cosd(x(8))-x(3)*cosd(x(7))-x(4);... 
    x(1)*sind(x(5))+x(2)*sind(x(8))-x(3)*sind(x(7))]; 

 

 

 

 

C.  DOE points using LHS for subsystem 3 
#

  
P2 - 
Shear 
Modul
us (Pa)  

P1 - 
innerradi
us (mm)  

P3 - Total 
Deformati
on 
Maximum 
(mm)  

P4 - Equivalent 
Stress Maximum 
(MPa)  

Na
me 

 P2  P1  P3  P4 

1 32142
00 

54.84 0.479637 0.22046 

2 33330
00 

61.8 0.462084 0.219699 

3 29898
00 

64.2 0.519608 0.22533 

4 32670
00 

61.08 0.471254 0.219609 

5 30162
00 

56.76 0.510743 0.220362 

6 35838
00 

57.72 0.42971 0.220238 

7 32538 62.76 0.473567 0.219871 
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00 

8 35706
00 

61.32 0.431232 0.219626 

9 30954
00 

58.44 0.497297 0.219838 

10 30558
00 

65.88 0.507519 0.225296 

11 31482
00 

54.12 0.490377 0.218116 

12 30426
00 

59.88 0.505777 0.219653 

13 32010
00 

59.4 0.48082 0.219905 

14 33726
00 

65.16 0.463392 0.225072 

15 31350
00 

56.28 0.491466 0.220363 

16 34914
00 

63.48 0.444824 0.225317 

17 34650
00 

60.12 0.44411 0.219474 

18 33198
00 

65.4 0.468027 0.226889 

19 30294
00 

58.92 0.508142 0.220033 

20 30030
00 

65.64 0.518187 0.226111 

21 31878
00 

61.56 0.483079 0.219682 

22 35046
00 

56.04 0.439652 0.22021 

23 35970
00 

64.44 0.431562 0.224646 

24 30690
00 

55.56 0.502185 0.220537 

25 34122
00 

60.36 0.451037 0.219493 

26 33066
00 

58.68 0.465494 0.219789 

27 34518
00 

58.2 0.445998 0.219881 

28 33594
00 

55.8 0.458732 0.220507 

29 36102
00 

57.96 0.426466 0.219921 
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30 31614
00 

63.24 0.489106 0.221157 

31 34254
00 

63.96 0.455848 0.225723 

32 34782
00 

63 0.444589 0.221069 

33 32274
00 

59.16 0.476926 0.219952 

34 35178
00 

62.52 0.437974 0.219838 

35 31746
00 

63.72 0.490985 0.226369 

36 31086
00 

55.08 0.49588 0.220427 

37 35574
00 

60.6 0.432679 0.21951 

38 35442
00 

57 0.434617 0.220326 

39 32934
00 

54.36 0.468007 0.218197 

40 36234
00 

64.92 0.42868 0.227338 

41 32802
00 

57.24 0.469524 0.219996 

42 32406
00 

64.68 0.481659 0.226061 

43 33858
00 

55.32 0.45524 0.220567 

44 30822
00 

57.48 0.499641 0.219951 

45 34386
00 

56.52 0.448068 0.220274 

46 33990
00 

62.04 0.453172 0.219754 

47 35310
00 

54.6 0.436465 0.218263 

48 33462
00 

59.64 0.459833 0.219582 

49 31218
00 

62.28 0.493584 0.220012 

50 29766
00 

60.84 0.517168 0.219571 

 
D. DOE points using LHS for subsystem 4 

#  P1 - P2 - P3 - Strain Energy Maximum 
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PlaneAngle2 
(degree)  

plane_angle1 
(degree)  

(J)  

Name P1 P2 P3   

1 -22.7571 21.38571 1.28E-05   

2 -22.2429 23.52857 1.16E-05   

3 -23.9571 23.35714 1.18E-05   

4 -22.5 22.15714 1.26E-05   

5 -23.7857 23.95714 1.24E-05   

6 -21.2143 22.07143 1.12E-05   

7 -22.5857 21.72857 1.68E-05   

8 -21.3 22.58571 1.33E-05   

9 -23.3571 21.3 1.30E-05   

10 -23.5286 23.01429 1.25E-05   

11 -23.1857 22.67143 1.16E-05   

12 -23.6143 23.18571 1.15E-05   

13 -22.8429 22.5 1.73E-05   

14 -22.0714 21.47143 1.05E-05   

15 -23.2714 21.04286 1.27E-05   

16 -21.5571 21.21429 1.23E-05   

17 -21.7286 22.92857 1.17E-05   

18 -23.7 22.75714 1.03E-05   

19 -23.8714 21.64286 1.16E-05   

20 -22.9286 21.9 1.21E-05   

21 -21.4714 23.1 1.11E-05   

22 -21.1286 22.84286 1.14E-05   

23 -23.4429 21.81429 1.05E-05   

24 -21.9857 23.87143 1.10E-05   

25 -21.0429 23.61429 1.15E-05   

26 -23.1 21.55714 1.12E-05   

27 -21.9 23.44286 1.22E-05   

28 -22.6714 23.7 1.15E-05   

29 -21.3857 21.98571 9.65E-06   

30 -23.0143 23.78571 1.07E-05   

 


