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1 Problem Statement

Switchable adhesive materials have been developed as soft grippers for lifting
flat surfaces (such as microchips, glasses, solar panels, and other products) of
significantly larger dimensions with high energy efficiency, and have potential in
lowering manufacturing costs. Importantly, the magnitude of the adhesive force
(i.e., the maximal pulling force F0) is tunable via external stimuli. For example,
when a voltage is applied, the percolating conductive propylene-based elastomer
(cPBE) phase carrying a current becomes softened due to joule heating, which
leads to re-distribution of stress concentration on the contact surface and thus,
a decreased maximal pulling force F1. An ideal gripper should possess large F0

(to be able to pull up heavy objects) and small F1 (high tunability), which are
influenced by both the material properties and defect patterns on the interface.

This project investigates the topological design of the interface defects that
governs the propagation of cracks under pulling, thus achieving high maximal
pulling force. Consider the following optimization problem

min
θ,{xk}Tk=1,f0

f0

subject to: f(xk,θ)− f0 ≤ 0

xk+1 = T(xk,θ) ∀k = 1, · · · ,K
x0 = xc

. (1)

In the context of crack propagation on the interface, xk contains the system
states representing particle coordinates and velocity values at time step k; θ
is the defect topology to be designed; fk := f(xk,θ) represents the external
force; and f0 the maximum external force. The state transition T(xk,θ) is
governed by the constitutive model of the material, and the initial condition xc
is given. Details on f and T will be introduced in Sec. 2. We will model crack
propagation as the sequential breaking of bonds between particles, which makes
the state transition nonlinear and resemble an explicit solver of a dynamical
system. We also choose the fixed time window K to be a large number, so that
for any defect topology θ, the set {fk}Kk=1 contains the maximum external force,
after which the values will drop quickly to zeros as the interface separates.

We denote the partial derivatives of function f(x, ·) with respect to x as
∇xf and the total derivative of f(x) as dxf .
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2 The Dynamical Model

The following model of crack propagation is developed based on [?].

Geometry We consider the soft gripper and the object to be lifted as two
rectangular blocks with the same cross-sections as shown in Fig. ??. The gripper
is set on top of the object. Each is discretized as a stack of particles of dimension
10-by-10-by-10. The interface is then a 2D square with N = 100 particles.

Boundary conditions The bottom of the object is fixed to the ground with
zero velocity and acceleration. The top of the gripper is set to have a constant
upward velocity v0 = 0.5 and zero acceleration. The four sides of both the
gripper and the object are set to have zero velocity and acceleration components
in the x-y plane.

State transition The system states concatenates the particle coordinates
sk = [sx1,k, s

y
1,k, · · · , sxN,k, s

y
N,k]T with particle speed vk = [vx1,k, v

y
1,k, · · · , vxN,k, v

y
N,k]T :

xTk = [sTk ,v
T
k ]. For particle i, we denote its neighbours as Ni and its distances to

neighbour j as dij,0. We consider 1st-order neighbours as the four directly adja-
cent particles, and 2nd-order neighbours as the diagonally adjacent ones. These
neighbourhood sets are pre-computed and do not change during the pulling. The
change in the distance from dij,0 between particles i and j creates an interaction
force [fxij,k, f

y
ij,k]T that follows

f lij,k =

{
0 if dij,k < dij,0
(slj,k − sli,k)f̄k/dij,k otherwise

for l ∈ {x, y}, (2)

where

f̄k = 2Kij(dij,k−dij,0)+0.5Tij(
∑
j′∈Ni

dij′,k+
∑
i′∈Nj

dji′,k)+0.5(
∑
j′∈Ni

dij′,kTij′,k+
∑
i′∈Nj

dji′,kTji′,k);

(3)
Kij and Tij are material properties parameterized by the topology θ. Specif-

ically, Kij =
2KθiaKθja

Kθia+Kθja
where θi and θj take phase values of 0, 1, and 2;

subscript a ∈ {1, 2} indicates whether j is a 1st- or 2nd-order neighbour, re-

spectively. Kθ1 = Eθ
2(1+µθ)

and Kθ2 = Eθ
4(1+µθ)

. And Tij =
2TθiTθj
Tθi+Tθj

, where

Tθ = Eθ(4µθ−1)
24(1+µθ)(1−2µθ) .

The net force on particle i at time step k is

Fi,k =
∑
j∈Ni

(sj,k − si,k)fij,k/dij,k. (4)

The acceleration of the particle is ai,k = Fi,k/m, where m is the universal
particle mass. For particles other than those with pre-specified states, their
velocity and coordinates are updated as

vi,k+1 = vi,k + ai,kδt (5)
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and
si,k+1 = si,k + vi,kδt+ 0.5ai,kδt

2. (6)

Eq. (5) and Eq. (6) define the state transition. Lastly, the fracture strength is
defined as the total net force in the z direction from particles on the top surface
of the gripper.

3 Sensitivity Analysis

To solve Eq. (1), we start by noticing that {xk}Kk=1 are inherently functions of
θ. Thus we can rewrite the problem as:

min
θ,f0

f0

subject to: f(xk,θ)− f0 ≤ 0 ∀k = 1, · · · ,K,
(7)

the Lagrangian of which is L(θ, f0,µ) = f0 +
∑K
k=1 µk(f(xk,θ) − f0), with

Lagrangian multipliers µ. The KKT conditions of Eq. (7) are

∇f0L = 1−
K∑
k=1

µk = 0

∇θL =

K∑
k=1

µkdθfk = 0

µ ≥ 0

f(xk,θ)− f0 ≤ 0

µk(f(xk,θ)− f0) = 0, ∀k = 1, · · · ,K.

(8)

The optimal solution (θ∗ and f∗0 ) can be found through a standard algorithm,
e.g., sequential quadratic programming, provided that the design sensitivity
dθfk is available.

In the following we discuss how this sensitivity can be calculated. Note that
dθfk = ∇θfk +∇xkfkdθxk. Here dθxk can be calculated recursively through

dθxk = ∇θxk + (∇xk−1
xk)dθxk−1

· · ·
dθx2 = ∇θx2 + (∇x1

x2)dθx1

dθx1 = dθT0,

(9)

where∇xkxk+1 = ∇xkTk and∇θxk+1 = ∇θTk. The analytical forms of∇xkfk,
∇θfk, ∇xkTk, ∇θTk, and dθT0 will be derived using TensorFlow.
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