
Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Optimal Control
ME598/494 Lecture

Max Yi Ren

Department of Mechanical Engineering, Arizona State University

November 30, 2017

1 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Outline

1. Introduction

2. Markov chain

3. Value iteration

4. Markov decision process

5. Policy iteration

6. Q-learning

7. Deep Q learning

8. Actor-critic

2 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Optimal control problems

Optimal control in general: Optimization problems that have an infinite
number of variables (along time).

Optimal control (in engineering): Physics-based system model exists
(system identification is done). The goal: Find control policies for
engineering systems.

Examples:

1. Optimal control of hybrid powertrain (power split between engine and
motors for minimal fuel consumption under sustained battery state of
charge)

2. Drone maneuvering to follow a pre-defined trajectory (optimal control
gains for a PID controller, or Linear Quadratic Regulator)

3. Robot gait design for energy efficient movement

3 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Optimal control problems

Reinforcement learning: Physics-based model does not exist but
observations can be made. The goal: Understand how machines should learn
to behave in a new environment.

Examples:

1. Learn to play various board and video games

2. Learn to grasp objects

3. Learn new locomotions for unknown environments

4 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Optimal control problems

There are overlaps between the two fields: Physics-based models or prior
knowledge can be integrated into reinforcement learning; RL algorithms can
be applied to engineering control problems where uncertainty is high.

Optimal control is like finding a path through a maze where the maze, albeit
complicated, is visible. Reinforcement learning is like finding a path through
a maze, without initially knowing how it looks like. The latter requires
exploration.

Reinforcement learning is of significant importance as it leads to adaptive
machines.

At this moment, we only have algorithms for solving individual problems.
Knowledge transfer/transfer learning/meta-reinforcement learning, i.e.,
solving new problems faster by practicing on similar problems is a key area
of research.

5 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Markov chain

A reward in the future is not worth as much as its current value.

An example of a Markov chain:

Figure: from Andrew W. Moore’s notes

6 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Markov chain

A Markov chain

1. has a set of states

2. has a transition probability matrix

3. each state has a reward

4. a discount factor γ

What are the expected value of being in each state of the Markov system?
(Hint: you need to solve a system of linear equations)

7 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

value iteration

Instead of solving a system of linear equations, one can use value iteration:

1. V1(si) = expected discounted sum of rewards over the next 1 time step

2. V2(si) = expected discounted sum of rewards over the next 2 time step

3. ...

Or

1. V1(si) = ri, ri = reward at state i.

2. V2(si) = ri + γ
∑N

j=1 pijV1(sj), N = #states, pij = transition probability

3. ...

4. Vk+1(si) = ri + γ
∑N

j=1 pijVk(sj)

8 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Markov Decision Process

A Markov decision process has

1. a set of states S

2. a set of actions A

3. a transition probability function T(s′, a, s)

4. a reward function r(s, a)

5. a discount factor γ

9 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Markov Decision Process

An example of a Markov decision process:

Figure: from Andrew W. Moore’s notes

10 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Optimal value function

An optimal control policy leads to an optimal value function: V∗(si) =
expected discounted future rewards, starting from state si, assuming we use
the optimal policy.

Compute optimal value function through value iteration: Define Vn(si) =
maximum possible expected sum of discounted rewards starting at si for n
time steps. V1(si) = ri

Bellman’s Equation: Vn+1(si) = maxk[ri + γ
∑N

j=1 Pk
ijV

n(sj)]

Value iteration for solving MDPs:

1. Compute V1(si) for all i

2. Compute V2(si) for all i

3. ...

4. Compute Vn(si) for all i until convergence

This is also called Dynamic Programming

11 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Policy Iteration

Define π(si) = action taken at si. πt = policy at the tth iteration.

Policy iteration:

1. n = 0

2. For all i, compute Vn(si) = long term reward starting at si using πn

3. πn+1(si) = arg maxk[ri + γ
∑

j Pk
ijV

n(sj)]

4. Go to 2 until convergence

12 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Policy Iteration vs. Value Iteration

Figure: from stackoverflow and Sutton & Barto

13 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Policy Iteration vs. Value Iteration

Main difference:

1. Policy iteration includes repeated policy evaluation and policy
improvement

2. Value iteration includes finding optimal value function and policy
extraction

3. Policy evaluation (in policy iteration) and finding optimal value
function (in value iteration) are similar except that the latter requires an
iteration over all actions (which can be costly!)

Which one to use:

1. Lots of actions? Policy iteration

2. Already have a fair policy? Policy iteration

3. Few actions? Value iteration

14 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Q-learning

Value iteration and policy iteration assumes that the state transitions and the
rewards are known. Reinforcement learning solves problems where these are
not known to an agent at the beginning.

Two types of RL algorithms exist: Model-based methods model the
transition and reward functions so that policy or value iteration can be
performed. Model-free methods derive optimal policies without modeling
the transition and reward functions.

We start with Q-learning, which is model-free. A Q function Q(s, a)
measures the long-term reward of action a at state s. The optimal Q function
derives the optimal control policy, i.e., V∗(s) = maxa Q∗(s, a), and
π∗(s) = arg maxa Q∗(s, a).

From Bellman equation, we have
Q∗(s, a) = r(s, a) + γ

∑
s′∈S p(s′|s, a)V∗(s′).

15 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Temporal-Difference

One approach to the derivation of Q∗ is through Q-learning (off-policy
Temporal-Difference):
Q(s, a) = (1− α)Q(s, a) + α(r(s, a) + γmaxa′ Q(s′, a′)), where s′ is the
observed next state, and α is the learning rate.

Q-learning algorithm:

1. Initialize Q table randomly

2. Run agent with policy π(s) = arg maxa Q(s, a) with probability 1− ε,
or other random actions at probability ε for T time steps (an episode),
for each step:

2.1 Take action a, observe r, s′

2.2 Q(s, a) = (1− α)Q(s, a) + α[r + γmaxa′ Q(s′, a′)]

3. Go to 2

Here we introduced ε-greedy policy to balance exploitation and exploration.

16 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

SARSA

SARSA is an “on-policy” TD algorithm. The only difference is that it
updates Q using the actual observed reward:

1. Initialize Q table randomly

2. Run agent with ε-greedy for an episode, for each step:

2.1 Take action a, observe r, s′

2.2 Choose a′ from s′ using ε-greedy

2.3 Q(s, a) = (1− α)Q(s, a) + α[r + γQ(s′, a′)]

3. Go to 2

17 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

On-policy vs. off-policy

Off-policy algorithms update Q values using the maximum of the existing Q
values, rather than that of the actual actions taken. Thus they are off from the
actual policy. With large enough exploration of the state and action spaces,
such algorithm will converge to the optimal policy.

On-policy algorithms update Q values using the actual action taken (Note in
SARSA we need the last “A”ction). They are usually faster to converge but
may not reach the theoretical optimal policy.

If the action space is continuous, Q learning cannot be directly applied, since
the max operation will become a nested optimization.

18 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

On-policy vs. off-policy

Figure: Q-learning reaches the optimal path; SARSA reaches the safe path.

19 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

From Q-learning to deep Q network

Q-learning algorithms such as TD have slow convergence when state and
action spaces are large, due in large part to the fact that one cannot afford to
exhaustively explore the spaces to populate the Q table. One solution to this
is to learn an approximated Q function rather than updating a table.
However, the real unknown Q function is often non-smooth. Deep neural
networks come to rescue in these cases (sort of...).

Figure: Deep Q-learning through convolutional neural network

20 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Update the Q function by gradient descent

The loss function to be minimized is:

L(θ) =
∑

{<si,ai,ri,s′i >}

(Q(si, ai; θ)− yi)
2, (1)

where yi = ri + γQ(s′i , arg maxa Q(s′i , a); θ). si, ai, ri, and s′i are the state,
action, reward, and next state, respectively. The update is off-policy. The
dependence of yi on θ is often neglected, which causes instability of the
training (see “separate target network”).

21 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Deep Q Network

Components of a deep Q Network

1. Convolutional layers are often used to extract features from imagery
inputs that can help determine the output.

Figure: Features extracted from a deep belief network

22 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Deep Q Network

Components of a deep Q network

2. Experience relay is referred to the training technique where previous
memories (i.e., tuples of ¡state, action, reward, state¿) are randomly sampled
to ensure that the agent does not only learn from the most recent experience.

3. A separate target network is used for calculating the target values yi.
This network takes a copy of the original Q function, and only updates its
weights according to the Q function slowly. This addresses the instability
issue of the training of the deep Q network.

23 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Challenges with DQN

DQN associates high-dimensional visual inputs with actions. However, the
robustness of convolutional neural network is still under question. Thus,
controllers based on DQN can surfer from adversarial attacks, and can easily
crash due to minor changes in the visual settings of the problem, see
https://www.youtube.com/watch?v=QHcAlAprFxA.

24 / 28

https://www.youtube.com/watch?v=QHcAlAprFxA


Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Actor-Critic

Critic-only algorithms (e.g., Q-learning) rely only on approximating the
optimal value functions (following the Bellman equation), and find policies
indirectly.

Actor-only algorithms (e.g., policy search) uses simulation to approximate
the gradient for improving a policy. The approximated gradient often has
large variance, and changing the policy will require new gradient
approximation and new simulations.

25 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Actor-Critic

Actor-critic algorithms combine the strength of the two: We keep track of an
approximation of the Q (or value) function, and use this approximation to
derive the improve directions of a policy.

This is analogous to response surface method, where in each iteration, we
learn a response surface (Q or value function) to approximate the unknown
reward landscape, find a solution (policy) for this surface, which then helps
to get more data to refine the response surface.

Figure: Actor-critic learning
26 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Actor-Critic

Pseudo code for actor-critic learning

1. Initialize Q function Q(s, a; θq) and deterministic policy µ(s, θ) with
random θq and θ

2. Run an episode to collect tuples {< si, ai, ri, s′i >} for T time steps

3. Set dθq = 0, dθ = 0

4. For i = T, ..., 1:

4.1 Accumulate dθq: dθq = dθq +∇θq Lq(θq), where
Lq(θq) = (Q(si, ai; θq)− yi)

2, and yi = ri + γQ(s′i ; θq)

4.2 Accumulate dθ: dθ = dθ +∇θQ(si, µ(si, θ); θq)

5. update θq and θ using dθq and dθ, respectively

6. Go to 2

27 / 28



Outline introduction Markov chain Value Iteration Markov Decision Process Policy Iteration Q-learning Deep Q Network Actor-Critic Summary

Summary

I Markov chain and Markov decision process - state, action, reward,
transition, discount

I Known state transition and rewards - value/policy iteration

I Unknown state transition and rewards - Q-learning (SARSA, policy
search)

I Large state/action spaces - Learn Q/policy functions

I Actor-critic combines Q-learning and policy search

28 / 28


	introduction
	Markov chain
	Value Iteration
	Markov Decision Process
	Policy Iteration
	Q-learning
	Deep Q Network
	Actor-Critic
	Summary

