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Abstract 
Flywheels are being used as energy storage systems for years but were not fully exploited 

due to weight factor. With the advent of composite materials that problem is now 

resolved resulting in flywheels being used in commercial vehicles in the near future as a 

replacement heavy weigh KERS systems. 

 

FLYBRID KERS is a technology which will be very prominently used in the future because 

of its high efficiency and lower cost compared to other energy storage systems. Thus, we 

as a group were intrigued to study about this technology and tried to improve its 

efficiency by modifying certain aspects of this technology. FLYBRID KERS is a very 

sophisticated technology which is being used in F-1 cars, hence even a small increase in 

efficiency is a sufficient improvement. 

Our project deals with the optimization of the energy storage in the flywheel of a FLYBRID 

KERS. The overall system is fragmented into four individual subsystems which have their 

own objective functions and constraints and are optimized individually. The four 

subsystems considered are:  

 Maximizing Kinetic energy of the flywheel by improving moment of inertia 

 Minimizing Stator-Rotor losses in the flybrid 

 Minimizing coupling losses in the flybrid  

 Minimizing mechanical losses in the flybrid 
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1. Introduction 

 

FLYBRID KERS is a type of Kinetic Energy Recovery system where instead of a battery a 

mechanical flywheel is used. The system aims at storing the energy lost due to braking 

and use it to aid in accelerating the vehicle later. This is done by a flywheel which is a 

metal/composite disk rotating at very high speed and stores rotational energy. Flybrid 

Technology Systems uses Flywheel based Kinetic Energy Recovery System (KERS). In 

conventional KERS, system battery and other associated systems are used, but this uses 

a new low weight flywheel system which delivers greater power and has higher fuel 

efficiency than electronic systems. This technology might be the answer to stringent 

pollution control norms of the future and to meet high energy/power conversion needs. 

The flywheel hybrid system for road cars is expected to offer 20% CO2 fuel savings under 

New European Driving Cycle test conditions, and up to 30% in real-world conditions. It is 

a reliable and efficient replacement for Battery. Designed to last 250,000 km, this 

technology makes it possible to store more energy during short braking periods, 

dramatically increasing system effectiveness. The system is very efficient with up to 70% 

of braking energy being returned to the wheels to drive the vehicle back up to speed. 

Flybrid KERS technology is around 1/3 the cost of an equivalent power electric hybrid 

system. 

 

2. Overall Design Problem Statement 

 

Our overall design objective is to maximize the kinetic energy storage in the flywheel of 

a FLYBRID KERS system. In order to do that we have chosen four individual subsystems 

related to the flywheel design. By optimizing these subsystems individually we aim to 

maximize the kinetic energy storage in the flywheel by minimizing the losses in the flybrid 

which are the stator rotor losses due to the magnetic bearings, losses in the coupling due 

to vibrations when energy is transmitted from the CVT to the flywheel and mechanical 

losses due frictional and aerodynamic force. 

 

The flywheel kinetic energy storage optimization including the minimization of the 

flywheel losses can be done by optimizing the geometry of the flywheel. As the flywheel 

volume increases the energy storage increases but the flywheel structure has certain 

volume constraints as it is kept inside a casing and also there are   other geometric trade-

offs between the subsystems which have to be feasibly and optimally balanced to 

achieve an overall system optimum.  
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3. Nomenclature    

 

Symbol Description Unit 

Ro Outer Radius of the Flywheel meter 

Ri Inner Radius of the Flywheel meter 

r Radius of the shaft meter 

tw Thickness of the web meter 

H Length of the Flywheel meter 

L Rotor Length meter 

dso Stator Outer Diameter meter 

x1 Split Ratio constant 

x2 Aspect Ratio constant 

d Distance from the web surface to the top most part of the 

flywheel 

meter 

c Damping Coefficient N.m/rad 

k Spring Constant Kg.m2/s 

μ Poisson's Ratio constant 

 Angular Velocity rad/sec 

ρ Density of the material kg/m3 

v Tip Velocity m/s 

      I1       Polar moment of inertia of the flywheel kg.m2 

       Ip1      Polar moment of inertia of the web kg.m2 

        Ip2      Polar moment of inertia of the rim kg.m2 

    m1 Mass of the web kg 

    m2 Mass of the rim kg 

Sy Safe Yield Stress MPa 

𝜏 Applied Torque N.m 

      I2     Moment of inertia of the CVT kg.m2 
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4. Subsystems optimization 

 
4.1 Design Optimization of the Structural Subsystem of the Flywheel 

 

4.1.1 Introduction 

 

Flywheel design is a key aspect for designing and developing a flywheel energy storage 

system. The flywheel rotor has high speed working conditions and hence must possess 

high energy density, high specific energy, low weight, low density and high mechanical 

strength properties. The flywheel must be designed to withstand the radial and tangential 

stresses acting on it. The flywheel design should take into account the geometry of the 

flywheel casing and the geometry of the shaft. The material chosen for the flywheel is 

Aluminum 7050 as it has low weight and possesses good load bearing capacity. The goal 

of the design process is to achieve the optimum geometric parameters of the flywheel 

and the factors to be considered for this process are energy storage, operational speeds, 

material behavior, moment of inertia and the general configuration of the flywheel.  

 

4.1.2 Problem statement 

  

The objective of this subsystem is to maximize the kinetic energy storage in the flywheel 

by maximizing the moment of inertia of the flywheel. For this subsystem, the kinetic energy 

stored in the flywheel is maximized without considering the energy losses, once the 

energy losses due to vibration, stator-rotor losses and the mechanical losses are 

calculated from the other subsystems, they are integrated with the structural subsystem 

and the net kinetic energy stored in the flywheel is calculated. The moment of inertia of 

the flywheel is maximized by maximizing the polar moment of inertia equation of the 

flywheel. The constraints such as stress constraints, volume constraints and linear 

geometric constraints are used while solving the optimization problem.  

 

 
                                                         Figure 1 - Flywheel Design 
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Material Properties for Aluminum 7050 

  

Density (kg/m3) Poisson's Ratio (μ) Safe Yield Stress(Sy) (MPa) 

2810 0.33 455 

                                       Table 1- Material properties of Aluminum 7050 

 

4.1.3 Mathematical Model 

 

4.1.3.1 Design Variables 

 

Ri : Inner radius of the flywheel (m) 

Ro : Outer radius of the flywheel (m) 

r   : radius of the shaft (m) 

tw: Web thickness (m) 

H: Length of the flywheel (m) 

4.1.3.2 Design Parameters 

μ- Poisson’s Ratio 

- Angular velocity of the flywheel (rad/sec) 

ρ- Material density (kg/m3) 

v- Tip velocity of the flywheel (m/s) 

4.1.3.3 Objective Function 

The objective is to maximize the kinetic energy stored in the flywheel and since the 

moment of inertia of the flywheel is directly proportional to the kinetic energy stored, it is 

necessary to maximize the moment of inertia stored in the flywheel.  

 

The flywheel geometry can be divided into spoke and rim geometry and they are 

considered to be a uniform thickness rotating disc respectively. So the moment of inertia 

equation for a cylinder is considered. The moment of inertia of the flywheel is dependent 

on the polar moment of inertia and is taken to be the sum of the moment of inertia of the 

rim and the moment of inertia of the web. 

 

The Kinetic energy stored in the flywheel, KE = 
1

2
 I1[

𝑚𝑎𝑥
2 - 𝑚𝑖𝑛

2 ] 

I1 – Moment of inertia of the flywheel 

- Angular velocity of the flywheel 

 

Maximize f = 
𝟏

𝟐
 𝐈𝟏[𝒎𝒂𝒙

𝟐 - 𝒎𝒊𝒏
𝟐 ] 
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Polar Moment of inertia  

 

The Moment of inertia equation consists of two parts, the pol 

I1 =  Ip1 + Ip2  = 
m1

2
 (r2 + Ri

2) + 
m2

2
 (Ri

2 +Ro
2) 

                       = 
ρπtw

2
(Ri

4- r4) +  
ρπH

2
(Ro

4- Ri
4) 

I1      – Polar moment of inertia of the flywheel (kg.m2) 

Ip1  – Polar moment of inertia of the web (kg.m2) 

Ip2  – Polar moment of inertia of the rim (kg.m2) 

m1 – Mass of the web (kg) 

m2 – Mass of the rim (kg) 

 

4.1.3.4 Constraints 

Stress constraint based on Tresca failure criterion for isotropic materials 

g1: 
3+μ

4
 ρ2 (Ro

2 +
1−μ

3+μ
 r2) < [Sy]               

The packaging volume of the flywheel system including the flywheel casing is taken to 18 

liters 

g2: πRo
2 H − 0.018 = 0  

Optimum radius ratio calculated using energy density and specific energy equations 

g3: 
Ri

Ro
 = 0.49 

Geometric Constraints 

g4: Ri − Ro ≤ 0  

g5: 0.25H - tw ≤ 0 

g6: tw - 0.33H  ≤ 0 

g7: Ri -r- 0.052 ≤ 0 
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4.1.4 Model Analysis 

4.1.4.1 Stress Constraint based on the Tresca failure criterion 

The stress at a point in the disc is three stress states: the radial stress σr, tangential stress 

σt, and axial stress σz. Because the surface of the disc is a free surface in the z direction, 

σz =0. Since the material used is isotropic in nature, the Tresca failure criterion is used as 

the stress condition. According to this criterion, 

 

σ1 –σ3 ≤ [Sy]                                       

Where σ1 and σ3 are the maximum and minimum principal stresses and [Sy] is the safe 

yield stress of the material. The radial and the tangential stresses are the principal stresses 

for this system. The radial and the tangential stresses are the principal stresses for this 

system.                                                                                            

For an isotropic material, 

Radial stress,  

σr =  
3+μ

8
 ρ2[Ro

2 + r2 −
Ro

2r2

ri
2 − ri

2]                                                                                               (1) 

Tangential stress,  

σt =  
3+μ

8
 ρ2[Ro

2 + r2 +  
Ro

2r2

ri
2 −  

1+3μ

3+μ
 ri

2]                                                                                     (2) 

where, 

ri – radius of the ith point 

μ- Poisson’s Ratio 

- Angular velocity 

ρ- Material density 

The maximum radial stress is at ri = √Ror    in Eq.(1) and the maximum tangential stress is 

at ri =r in Eq.(2) 

 

σrmax = 
3+μ

8
 ρ2 (Ro − r )2                                                                                                          (4)              

σtmax =  
3+μ

4
 ρ2 (Ro

2 +
1−μ

3+μ
 r2)                                                                                                   (5) 

Comparing the tangential stress σti with the maximum radial stress σrmax at ri = 

√Ror   point, we get, 
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σti – σrmax = 
3+μ

8
 ρ2[Ro

2 + r2 +  
1−μ

3+μ
 2Ror] - 

3+μ

8
 ρ2 (Ro − r )2  > 0                                      - (6) 

 

Comparing the radial stress σri with the maximum tangential stress σtmax at ri = r and ri = 

Ro, the radial stress is σri=0 when ri = r and ri = Ro in Equation (1), the maximum stress is 

always at the inner radius. Thus we get,  

σ1 – σ3 = σtmax = 
3+μ

4
 ρ2 (Ro

2 +
1−μ

3+μ
 r2) < [Sy]                                                                          (7) 

Equation (7) gives the maximum stress acting at any given point in the flywheel which 

acts as a constraint equation for the system. 

From Equation (7), 

 

Ro <√
1

3+μ
 [

4[Sy] 

ρ2 − (1 − μ)r2]                                                                                                       (8) 

 

Equation (8) gives a constraint relation between the outer radius of the flywheel and the 

radius of the shaft. 

 

4.1.4.2 Optimum Radius ratio based on Energy density and Specific energy calculations 

Using the energy density and the specific energy equations, an optimum radius ratio can 

be obtained. High energy density and specific energy values are desired, thus using their 

respective equations a good balance of energy density and the specific energy values 

are obtained with respect to the radius ratio (Ri/Ro). The maximum tip velocity ‘v’ of the 

flywheel is substituted in the equations and a plot is generated using MATLAB to obtain 

an optimum radius ratio. 

Energy Density = 
Energy Stored in the Flywheel Rim

Rim Enclosed Volume
 

                                    = 
ρv2

4
[1-(Ri/Ro)4] 

Specific Energy = 
Energy Stored in the Flywheel Rim

Mass of the Rim
 

                              = 
 v2

4
[1-(Ri/Ro)2] 
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Figure 2- Plot showing the variation of the radius ratio with respect to the specific energy 

and energy density of the flywheel 

The plot comparing the radius ratio with the specific energy and energy density is shown 

in Figure2. From the plot it can be seen that at a radius ratio of 0.49, the two curves meet. 

The energy density value obtained is 398 MJ and the specific energy value obtained is 

359.8 KJ. These values are taken as optimum values and the radius ratio of 0.49 is used as 

a constraint in maximizing the moment of inertia equation. 

 

4.1.4.3  Pre-optimization visualization of influence of inner and outer radius on the Moment 

of inertia of the flywheel 

Figure 3- Contour Plot showing the variation of the moment of inertia of the flywheel 

with respect to its inner and outer radius 
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A contour plot determining the relationship between the inner and outer radius and the 

moment of inertia is shown in Figure 3. The X-axis represents the outer radius and the Y-

axis represents the inner radius. A larger moment of inertia can be obtained at higher 

radius values but due to the mass constraint which is explained in detail in the next plot, 

a maximum inner radius of 0.08m and a maximum outer radius of 0.2m can only be 

chosen. 

 

Figure 4- Plot showing the variation of the moment of inertia of the flywheel with respect 

to the inner radius and mass of the flywheel 

In order to understand the relationship between the Moment of inertia of the flywheel, 

mass of the flywheel and the radius ratio, a plot is made with the inner radius as the X-

axis, Moment of inertia as the left Y-axis and the mass of the flywheel as the right Y-axis. 

The plot is shown in Figure 4. As the inner radius increases the moment of inertia of the 

flywheel increases, but it has to be constrained within a feasible mass of the flywheel. 

From our literature review we found that the feasible mass of the flywheel ranges from 10 

to 20 kg, thus taking it into account, it can be seen from the graph that the best inner 

radius value is 0.069 m and the corresponding moment of inertia value is 0.524 kg.m2 and 

the corresponding flywheel mass value is 13.55 kg. These values help us understand the 

relation between the flywheel geometry and the moment of inertia of the flywheel. This 

was used as a base for proceeding with the flywheel design optimization. 

The outer radius of the flywheel (Ro) is one of the common variables with the mechanical 

losses subsystem of the flywheel, according to the objective function of the mechanical 

losses subsystem Ro must be minimized to reduce the drag coefficient but the objective 

function of the structural subsystem requires a high Ro thus this acts as a trade-off. 

 

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

 

 

X: 0.069

Y: 0.5243

inner radius 

M
o

m
e

n
t 

o
f 

in
e
ti
a

 (
k
g

.m
2
)

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

m
a

s
s
 o

f 
th

e
 f

ly
w

h
e

e
l 
(k

g
)

y1 = specific energy

y2 =energy density



10 
 

4.1.4.4 Monotonicity table 

 

 f = 
ρπx4

2
(x1

4- x3
4) +  

ρπx5

2
(x2

4- x1
4) 

g1: 
3+μ

4
 ρ2 (x2

2 +
1−μ

3+μ
 x3

2) < [Sy]       

g4: 𝑥1 − 𝑥2 ≤ 0  

g5: 0.25𝑥5 -𝑥4  ≤ 0 

g6: 𝑥4 - 0.33𝑥5  ≤ 0 

g7: 𝑥1 -𝑥3- 0.052 ≤ 0 

         

 x1 (Ri) x2 (Ro) x3 (r) x4 (tw) x5 (H) 

f - + - + + 

g1  + +   

g4 + -    

g5    - + 

g6    + - 

g7 +  -   

Table 2- Monotonicity Table 

 

4.1.4.5 Active Constraints  

w.r.t  ‘x1’ g4 and g7 are active 

w.r.t  ‘x2’ g4 is active 

w.r.t  ‘x3’ g1 is active 

w.r.t  ‘x4’ g5 is active 

w.r.t  ‘x4’ g6 is active 

g2 and g3 are equality constraints 
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4.1.5 Optimization study and Results 

4.1.5.1 Lower and Upper bounds of the Design Variables 

   

Variables Lower Bound Upper Bound 
𝐑𝐢 0 inf 

Ro 0 inf 

r 0.02 inf 
 

 

0 inf 

H 0 inf 

                               Table 3- Upper and Lower bounds of the design variables 

If a lower bound is not given to the shaft radius it goes to zero, this is because the 

maximum stress acts at the inner radius of the flywheel thus in order to compensate it, the 

flywheel becomes a solid cylinder rather than a hollow one. Thus a lower bound is given 

to the shaft radius to maintain the geometry of a hollow flywheel.  

4.1.5.2 Objective function and nonlinear constraint equations in Matlab 

 

Figure 5- Matlab file for the objective function 

Figure-5 shows a Matlab script which was created to enter the objective function, where 

f is the moment of inertia equation which is written in the negative null form.  
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Figure 6- Matlab file for the non-linear constraint equations 

Figure-6 shows a Matlab file which was created to input the non-linear constraints, the 

non-linear inequality constraint is the stress constraint and the non-linear equality 

constraint is the volume constraint.  

4.1.5.3 Optimization Toolbox 

The optimization was done using the Matlab Optimization Toolbox. The fmincon solver is 

used and the algorithms used to solve the optimization problem were SQP and Active Set 

algorithms. 

 

 

Figure 7-Optimization Toolbox using SQP algorithm 
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Figure-7 shows the optimization toolbox which was used to solve the optimization 

problem. The linear equality and inequality constraints were given as matrices. The 

Matlab files which were created for formulating the objective function and the nonlinear 

constraint equations are called in their respective fields in the toolbox. Once the bounds 

for the variables and the initial points for each variable is given, the optimization can be 

run. The order in which the values for bounds and initial points of the variables are given 

is [Ri,Ro,r,tw, H]. 

Optimization Results: 

Algorithm No.of 

iterations 

Ri 

(m) 

 

(m) 

R 

(m) 

tw 

(m) 

H 

(m) 

I1      

(kg.m2) 

SQP 11 0.069 0.14 0.02 0.096 0.292 0.477 

Active 

Set 

5 0.069 0.14 0.02 0.096 0.292 0.477 

Table 4-Opimization Results 

Table- 4 shows the optimization results. At different initial points the same results were 

obtained thus indicating that the local minima obtained by solving this optimization 

problem is the global minima. Though the number of iterations vary according to the 

algorithm which is used to run the optimization, the results obtained were the same. 

The optimization results give a Moment of inertia value of 0.477 kg.m2, the flywheel is 

optimized for its maximum possible angular velocity and minimum possible angular 

velocity. Thus by substituting the optimum moment of inertia value that is obtained after 

running the optimization, in the Kinetic energy equation, we get the maximum Kinetic 

energy stored in the flywheel to be 0.816 MJ. This is the total energy stored in the flywheel 

without considering the energy losses. The energy losses due to vibration, stator-rotor 

losses and the mechanical losses are calculated from the other subsystems, they are 

integrated with the structural subsystem and the net kinetic energy stored in the flywheel 

is calculated.  
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Optimization Plot Functions 

 

 

The optimization plot functions give details about the total function evaluations, optimal 

points, first order optimality and step size. 
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4.2 Optimal design of the coupling and flywheel for minimize the energy loss due to 

vibrations in coupling 

4.2.1 Problem Statement 

In Kinetic Energy Recovery Systems, the kinetic energy is usually transmitted from CVT to 

the flywheel through a mechanical coupling. Because of vibration in couplings, a huge 

amount of kinetic energy is being lost and it can’t be delivered to the flywheel. This 

energy loss could be obtained from the equation 2.1.  

Δ. 𝐾. 𝐸 = [
1

2
𝐼2𝜃2

2̇ (0)] − [
1

2
𝐼1𝜃1

2̇ (𝑡) +
1

2
𝐼2𝜃2

2̇ (𝑡)]      (2.1)  

Where 

𝐼1: Moment of inertia of the flywheel 

𝐼2: Moment of inertia of the CVT’s output shaft 

𝜃2(0)̇ : CVT output disc’s initial angular velocity at the time of engagement 

𝜃1(𝑡)̇ : Flywheel’s angular velocity at desired time (t) 

𝜃2(𝑡)̇ : CVT output disc’s angular velocity at desired time (t) 

Because we are not going to design CVT system and by analyzing the equation (2.1) we 

can see that the first term in right hand side of the equation is constant. Because this term 

is constant, we are not able to optimize this term in order to minimize the energy loss. In 

order to minimize energy loss we should maximize second and third term in the right hand 

side of the equation. The second term is the kinetic energy stored in flywheel and the 

third term is kinetic energy stored in CVT after the desired period of time. Maximizing third 

term means we are maximizing energy stored in CVT which is a nonsensical optimization. 

So, for minimizing energy loss due to vibrations in coupling, we need to maximize energy 

stored in flywheel by optimal design of coupling and flywheel. 

 

Figure 1: Schematic figure of CVT-Coupler-Flywheel system 
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4.2.2 Mathematical Model 

4.2.2.1 Objective Function 

In section 4.2.1 we described that in order to minimize the energy loss due to vibrations in 

coupling, we need to maximize the energy stored in the flywheel (equation 2.2). 

𝑓
𝑚𝑎𝑥

:   
1

2
𝐼1𝜃1

2̇ (𝑡)          (2.2) 

As you can see in the equation 2.2, there are two general variables 𝐼1and 𝜃1̇.  𝐼1 is the 

moment of inertia of the flywheel. It includes several variables and parameters itself. We 

will talk about moment of inertia of the flywheel later section.  𝜃1̇ is the angular velocity 

of the flywheel that depends on the time. To calculate the angular velocity we need to 

find the equation of motion of the flywheel as a function of the time. This one also will be 

discussed in later section. 

4.2.2.2 Constraints 

This subsystem has totally seven variables: two of them are related to the coupling and 

going to be optimized in order to minimize the vibrations in the coupling. There are no 

constraints on these variables except that C and K both should be greater than zero. 

Five of the variables are related to the flywheel and going to be optimized in order to 

maximize the energy is being stored in flywheel. There are six constraints for these 

variables. Some of these constraints are linear, some nonlinear. Some of them are 

equality and others are inequality constraints. In table 1 you could see all the constraints 

and their types. 

Constraint Type equation 

𝒈𝟏 Geometric 

constraint 

𝑅𝑜 − 𝑅𝑖 > 0 

𝒈𝟐 Material strength 3 + 𝜇

4
𝜌

𝑣

𝑅𝑜
(𝑅𝑜

2 +
1 − 𝜇

3 + 𝜇
𝑟2) < 𝑆𝑦 

𝒈𝟑 Geometric 

constraint 

𝑡𝑤 − 0.2𝐻 ≥ 0 

𝒈𝟒 Geometric 

constraint 

𝑡𝑤 − 0.4𝐻 ≤ 0 

𝒈𝟓 Volume constraint 𝐻𝜋𝑅𝑜
2 − 0.013 = 0 

𝒈𝟔 Geometric 

constraint 

𝑅𝑖 − 0.49𝑅𝑜 = 0 

Table 1: Constraints 
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4.2.2.3 Variables and Parameters in tables 

Tables 2 and 3 present all the variables and parameters have been used in both 

objective function and constraints in a nutshell. In the next section, we will describe how 

we got the values for these parameters. 

Design variables Symbol Notations in 

codes 

Unit 

Thickness of the web 𝑡𝑤 X(1) m 

Length of the flywheel 𝐻 X(2) m 

Inner radius of the flywheel 𝑅𝑖 X(3) m 

Outer radius of the flywheel 𝑅𝑜 X(4) m 

Radius of the shaft 𝑟 X(5) m 

Equivalent spring constant of the 

coupling 

𝐾 X(6) Kg.m2/s 

Equivalent damping coefficient 

of the coupling 

𝐶 X(7) N.m/rad 

Table 2: List of variables 

 

Design parameters Symbol Unit Values and material used  

Moment of inertia of the CVT 𝐼2 Kg/m2 0.21 / steel 4330 

Density of the material used for 

flywheel 

𝜌 Kg/m3 2810 / Aluminum 

Poisson’s ratio of the material is used 

for flywheel 

𝜇 -- 0.3 / Aluminum 

Yield strength of the material is used 

for flywheel 

𝑆𝑦 MPa 455 / Aluminum 

Applied torque 𝜏 N.m 0 (At the time of 

engagement) 

Table 3: Parameters used in objective function and constraints 
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4.2.3 Model Analysis 

4.2.3.1 Decomposition of the objective function 

As discussed, the objective function which we are going to maximize includes two 

general variables: 𝐼1and 𝜃1̇. 

4.2.3.2 Decomposition of the moment of inertia of the flywheel 

𝐼1 consists five variables and could be written as equation 2.4. 

𝐼1 = 𝐼𝑠 + 𝐼𝑟 =
1

2
𝑚(𝑅𝑖

2 + 𝑟2) +
1

2
𝑚(𝑅𝑜

2 + 𝑅𝑖
2) = (

𝜌𝜋𝑡𝑤

2
) (𝑟4 − 𝑅𝑖

4) + (
𝜌𝜋𝐻

2
) (𝑅𝑖

4 − 𝑅𝑜
4)  (2.3) 

Where 

𝑡𝑤: Thickness of the web 

𝐻: Thickness of the flywheel 

𝑅𝑖: Inner radius of the flywheel 

𝑅𝑜: Outer radius of the flywheel 

𝑟: Inner radius of the rotor (outer radius of the flywheel’s shaft) 

We would label these variables x(1), x(2), x(3), x(4) and x(5) respectively. 

4.2.3.3 Decomposition of the moment of inertia of the flywheel 

To find the equation of the motion of the flywheel, we need to solve the coupled system 

of 2nd order ODEs shown in equations 2.4 and 2.5 at the same time 

𝐼1𝜃1̈ +  𝐾(𝜃1 − 𝜃2) + 𝐶(𝜃1̇ − 𝜃̇2) = 0        (2.4) 

𝐼2𝜃2̈ +  𝐾(𝜃2 − 𝜃1) + 𝐶(𝜃2̇ − 𝜃̇1) = 𝜏        (2.5) 

Where 

𝐼1: Moment of inertia of the flywheel 

𝐼2: Moment of inertia of the CVT’s output shaft 

𝜃1̈: Angular acceleration of the flywheel 

𝜃2̈: Angular acceleration of the CVT’s output shaft 

𝜃1̇: Angular velocity of the flywheel 

𝜃2̇: Angular velocity of the CVT’s output shaft 

𝜃1: Angular position of the shaft 

𝜃2: Angular position of the CVT’s output shaft 
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𝐾: Equivalent torsional spring constant of the coupling 

𝐶: Equivalent torsional dashpot damping coefficient of the coupling 

𝜏: Applied torque which is zero at the time of engagement 

As you can see moment of inertia of the flywheel is again participating in equations of 

the motions. We will use the same notation as we used in 2.3 for calculating 𝐼1. 

Remember that we are going to minimize the kinetic energy loss due to vibrations in 

coupling. To do this, we need the find optimal values for the equivalent torsional dashpot 

damping coefficient of the coupling (C) and equivalent torsional spring constant of the 

coupling (K). At the same time, we must find the optimal dimensions of the flywheel in 

order to have the optimal design of the moment of inertia of the flywheel. 

C and K are directly in equations 2.4 and 2.5. We will label them x(6) and x(7) when we 

want to build our script to solve the system of ODEs and pass the results to MATLAB  

fmincon toolbox. 

Although there is an analytical solution for this system of 2nd order coupled ODEs, we 

would solve these equations numerically by writing a script using fourth-order Runge-

Kutta method in MATLAB. The reason for solving this system numerically is that we are 

going to use MATLAB optimization tool box (fmincon) and in this case we are able to pass 

the numerical solutions of system of differential equations directly to MATLAB optimization 

tool. The process of solving this system of ODEs and implementing it in objective function 

in order to find the optimal values of C and K for minimum energy loss due to vibrations 

in coupling will be discussed in later section. 

4.2.3.4 Finding parameters used in objective functions and constraints 

In order to solve equations 2.3 and 2.4 and have completely known constraints, we need 

to find values for the parameters that participate in objective function and constraints. 

One of the most important parameters that participates in equations 2.3 and 2.4 is 

moment of inertia of the CVT (𝐼2). 

As we mentioned before, we are not going to design CVT so the moment of inertia of the 

CVT constant. CVT is a big and complicated transmission system that is connected to 

break system by its input shaft and to flywheel by its output shaft. Calculating moment of 

inertia is a really hard and tedious task and it is beyond the scope of this course. For the 

sake of simplicity, we are going to approximate the moment of inertia of the CVT by 

calculating the moment of inertia of secondary pulley set and planetary gear set 

mounted on output shaft. 

The equation for computing 𝐼2 is as follow: 

𝐼2 =  𝐼𝑝 + 𝐼𝑔           (2.6) 

Where: 
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𝐼𝑝: Moment of inertia of secondary pulley set 

𝐼𝑔: Moment of inertia of planetary gear set 

𝐼𝑝 =  
1

2
𝑚𝑝𝑟𝑝

2           (2.7) 

𝐼𝑔 =  
1

2
𝑚𝑔𝑟𝑔

2           (2.8) 

By substituting 𝑚 =  𝜌𝑉 and 𝑉 = (
𝜋𝑑2𝑡

4
) we have: 

𝐼𝑝 = 
1

2
𝜌𝑝𝜋𝑡𝑝(𝑟𝑝

4)           (2.9) 

𝐼𝑔 = 
1

2
𝜌𝑔𝜋𝑡𝑔(𝑟𝑔

4)           (2.10) 

Where: 

𝜌𝑝: Density of secondary pulley set 

𝜌𝑔: Density of planetary gear set 

𝑡𝑝: Thickness of secondary pulley set 

𝑡𝑔: Thickness of planetary gear set 

𝑟𝑝: Radius of secondary pulley set 

𝑟𝑔: Radius of planetary gear set 

Dimensions for conventional pulley and planetary gear set could be taken from technical 

papers. In table 4 you can see the dimensions used for this problem. 

The secondary pulley set and planetary gear set are mostly made from steel 4330. From 

mechanical design handbooks density for this type of steel is 7850 kg/m3.  

 Secondary Pulley Set Planetary Gear Set 

Diameter(mm) 148.2 224 

Thickness(mm) 44 100 

Table 4: Dimensions of secondary pulley and planetary gear sets 

Using data from table 1 and density of 7850 kg/m3 for both pulley and gear set we have: 

𝐼2 = 0.21 kg.m2 

Other parameters which are either in equation 2.5 or in constraints are as follow: 

𝑣: Maximum allowable velocity at the tip of the flywheel (1000 m/s for this application) 

𝜌: Density of the material is used for flywheel (2810 kg/m3 for aluminum) 
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𝜇: Poisson’s ratio of the material is used for flywheel (0.3 for aluminum) 

𝑆𝑦: Yield strength of the material is used for flywheel (455 MPa for aluminum) 

4.2.4 Optimization study and results 

4.2.4.1 Finding equation of motion 

As mentioned in previous section, to find equation of motion of the flywheel we are going 

to solve equations 2.4 and 2.5 by writing a script in MATLAB using 4th order Runge-Kutta 

method. 

To solve a higher order ODE in MATLAB, we need to transform them to system of 1st order 

ODEs using change of variables method. Then we need to write four scripts for these two 

coupled ODEs. We also need four initial conditions in order to be able to solve the system. 

The initial angular position and velocity is zero for flywheel and angular position is also 

zero for CVT at the time of engagement but initial angular velocity of the CVT output 

shaft varies case by case. It actually depends on the speed of the vehicle when the driver 

hits the brake pedal and the output speed ratio of CVT. Based on different reviewed 

cases, the speed of CVT’s output shaft at the time of engagement is between30000 to 

65000 rpm in most cases. For this project, we take the lower bound as initial angular 

velocity of the CVT’s output shaft. 

The boundary conditions for this system are as follow: 

1)  𝜃1(0) = 0 

2)  𝜃2(0) = 0 

3)  𝜃1̇(0) = 0 

4)  𝜃2̇(0) = 3140(rad/sec) 

Finally we should rewrite these equations based on our subsystem variables. In figures 2 

you could see a screenshot of one of these scripts in MATLAB. The complete scripts for 

solving this system will be provided in appendices. 

 

Figure 2 MATLAB script for solving  
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Next we should write a script based on Runge-Kutta method in order to solve this system. 

In figure 3 you would see a small part of this script as a snapshot. 

 

Figure 3: Script written for the 4th order Runge-Kutta algorithm 

After writing these scripts which are related to solving equations 2.4 and 2.5 numerically, 

we need to write some scripts for finding the optimal values for subsystem’s variables. The 

first script is for nonlinear constrains, either equality or inequality ones. You can see the 

screenshot for this code in figure 4. 

 

Figure 4: Script for nonlinear constraints 

There is one more script that we need to write which is for objective function (equation 

2.2). To write objective function we need to have the angular velocity of the flywheel at 
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the desired time. The usual time period of engagement of flywheel and CVT is 6.67 sec 

based on technical papers. By putting 6.67 sec as our desired time and get the 

corresponding value for the angular velocity of the flywheel and pass it to objective 

function, we can make the objective function ready in order to use it for optimization 

tool. In figure 5 you could see the screenshot of the code has been written for the 

objective function. 

 

Figure 5: Script for objective function (total time of engagement, initial speed as and 

final objective function in red, green and yellow boxes respectively) 

Finally to get the optimal values we would use MATLAB’s optimization tool called fmincon. 

For our purpose, there are three different algorithms implemented in it. These algorithms 

are:  interior points, SQP and active set. We are going to use all of them for our subsystem 

and see the results. 

Although we start with initial guesses that are close enough to the actual values of a real 

model, we will get the same answers with changing the initial points while we are using 

the same optimization algorithm. In table 5 you can see the values for the initial guess 

that we took. 

 

 𝒕𝒘 𝑯 𝑹𝒊 𝑹𝒐 𝒓 𝑲 𝑪 

Initial 

Guess 

0.04 0.04 0.08 0.1 0.03 170 0.45 

Table 5: Initial guess used in optimization tool 
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The only difference between final answers happens when we try different algorithms in 

fmincon toolbox. The optimal results for the Interior Points and Active Set algorithms is 

somehow the same. For these two algorithms the number of iterations only changes. The 

optimal values for the SQP algorithm shows almost big differences for the inner and outer 

radius of the flywheel. In table 6 you can see the optimal results by applying different 

algorithms. 

 Iterations 𝒕𝒘 𝑯 𝑹𝒊 𝑹𝒐 𝒓 𝑲 𝑪 

Interior 

Points 

73 0.046 0.144 0.098 0.199 0.03 170. 1 0.834 

Active Set 4 0.052 0.136 0.1 0.205 0.03 170 0.45 

SQP 7 0.066 0.225 0.078 0.159 0.03 170 0.45 

Table 6: Optimal results for three different optimization algorithms 

4.2.5 Discussion of the results 

4.2.5.1 Search for the global solutions 

As discussed in previous section, b trying different initial guesses we got the same optimal 

results for our subsystem. That means we have found our global solution for this problem. 

By comparing our final results for C and K we would see that these values are really close 

to the actual equivalent values for a coupling is used in a Kinetic Energy Recovery System 

(KERS). From technical papers, those couplings that are being used in KERS usually have 

the equivalent spring constant about 200 N.m/rad and equivalent damping coefficient 

of 0.6 Kg.m2/s. 

The same thing is also true for the optimal values of the flywheel’s dimensions. 

4.2.5.2 Physical interpretation of the results 

If we implement the optimal results taken from optimization tool and substituting them in 

the scripts written for solving system of ODEs and writing a new script to plot the angular 

velocity of the flywheel and CVT during the period of the engagement (6.67 second), we 

will have the figure 6 as the result. 
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Figure 6: Angular velocity of the flywheel and CVT based on optimal results 

As you see in figure above, the CVT starts from initial speed (3140 rad/s) and flywheel 

starts from speed zero. Then due to vibrations in coupling the velocity of CVT decreases 

and velocity of flywheel increases. Because the equivalent damping coefficient of the 

coupling is relatively high, the system goes to the steady state after only 1.5 seconds and 

vibrations in the coupling disappears. From this time to the end of the engagement both 

flywheel and CVT rotates with the same angular velocity of 657 rad/sec. 

One could argue that because there is a huge drop in angular velocity of the system, 

these C and K values. As we described in sections 2.1 and 2.3, we were trying to minimize 

the energy loss in the coupling with respect to maximize storable energy in flywheel. To 

make that happen, the system should go to the steady state very soon. The point is that 

if C is low and K is very high, the system would oscillate for a long period of time. In this 

case it might possible that the energy loss from coupling be lower but the point is that 

most of this energy will be still in CVT. This argument could be better grasped by bringing 

another figure for angular velocity when the flywheel has the same dimensions but the 

value of K is greater than and the value of the C is lower than the optimal value. 
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Figure 7: Angular velocity of the flywheel and CVT based on changing the values of C 

and K 

As you can see in this figure, with changing K from 170 to 185 and C from 0.83 to 0.6, 

angular velocity of the flywheel is 650 rad/s which is less than the angular velocity for 

previous figure. It means than the energy that stored in flywheel is less than previous 

state. 
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4.3 Design optimization of a flywheel system by minimizing the losses in the magnetic 

bearings 

4.3.1 Introduction 

 

Flywheels are increasingly used as a means for energy storage; thanks to their capacity to 

store an important quantity of energy, their long lifetime and their large charge/discharge 

cycles. To store a large amount of energy, high speed composite materials are often used 

and the flywheels are run at very high speeds. Due to their high speed operation, 

contactless bearings are required in order to reduce the friction losses which are important 

in the flywheel applications. Thanks to the absence of contact between rotating and non- 

rotating parts of a system, magnetic bearings system is used such high speed rotating systems. 

When the motor speed is 96000 RPM, frequency can reach up to 1600 Hz. The loss generated 

by the high frequency stator current and the high frequency core magnetic flux are far 

greater than that at low frequencies, therefore the rising temperature and noise 

generated by the high loss will produce great impact on the motor performance. So 

reducing the motor loss and improving the efficiency are the primary objectives in these 

systems. Motor loss is closely related to the electromagnetic field distribution inside the 

motor, and the flux distribution inside the motor is closely related to the motor generic 

dimensions. Therefore, for optimal efficiency, analysis of the critical dimensions of the stator 

and the rotor is essential. 

 

4.3.2 Problem Statement 

 

As mentioned earlier, high speed rotating systems use magnetic bearings to reduce the 

contact forces between the rotating and non-rotating parts. This work deals with various 

losses in this magnetic bearing system and to be more specific, it deals with minimizing 

the losses in the magnetic stator rotor system. But while doing so we need to keep in mind 

the design constraints of the flywheel system, both its geometric restrictions as well as the 

strength criteria. Hence we need to find a way to satisfy all the requirements while 

minimizing the losses. So the objective is to minimize these losses while finding the optimal 

design of the flywheel system. 

 

4.3.3 Mathematical Model 

 

The most notable losses in the system are the stator iron loss, stator copper loss, rotor eddy 

current loss and the rotor windage loss. The following sections briefly describes each loss. 

We will also see the effect of each of these losses on the split and aspect ratios. 

 

4.3.3.1 Stator Iron Loss 

 

Stator Iron loss (also called as stator core loss) is further divided into the hysteresis loss and 

the eddy current loss. These core losses depend on the frequency of the stator. Eddy 

current losses are minimized by lamination of the core. If the flux density is sinusoidal, the 

stator iron loss is given by the following equation. 

 

Pfe = KhfBm
a + KelfBm (i) 
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where, f is the frequency of the magnetic flux wave form, Bm is the peak of the sinusoidal 

flux density, ‘a’ is the Steinmetz constant, Kh is the hysteresis constant, Kel  is the eddy 

current constant. 

 

 
Figure 8 Iron loss vs Split Ratio 

4.3.3.2 Stator Copper Loss 

Copper loss forms a major proportion in the loss in the magnetic bearings. This loss is 

attributed to the electrical resistance in the stator winding. Hence this loss is often termed as 

winding loss. 

 

 
Figure 9 Copper Loss vs Split Ratio 

4.3.3.3 Rotor eddy current loss 

 

Cogging of the stator will produce non-sinusoidal stator magneto motive force (MMF), while 

the distribution of winding current is non-sinusoidal, that will produce flux density including 

space harmonic and time harmonic. Air-gap flux density harmonics will generate eddy 

current losses in the rotor conductor. 

 
Figure 10 Eddy Current loss vs Split Ratio 
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4.3.3.4 Rotor Windage Loss 

Due to the high rotor speed, rotor windage loss is so larger that it needs to be 

considered. Different exposure forms friction losses on the surface and end of rotor 

are different. Different split ratio will affect both surface windage loss and the end 

windage loss. Overall effect of split ratio on the windage loss is shown in the following 

graph. 

 
Figure 11 Windage loss vs split ratio 

4.3.3.5 Variation of total loss vs split ratio 

 

As we can see from the above graphs, all the losses behave differently with the change 

in the split ratio. It becomes interesting to note the effect of the split ratio on all the losses 

considered together. This effect is given by the following graph. We can successfully 

derive an equation of the graph shown above. 

 
Figure 12 Total loss vs Split ratio 

The curve fitting tool of MATLAB does the job for us. This equation is very use full and forms 

a part of the objective function for us. The equation is given below. 

 

L1 = 33330x1
4 − 3333x1

3 + 916.7x1
2 − 5342x1 + 2150                                                                  

(ii) 

 

4.3.3.6 Variation of total loss vs Aspect ratio 

 

A similar analysis is performed but by varying the aspect ratio of the rotor this time.  The 

final graph of the total loss with respect to the aspect ratio is given below. 
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Figure 13 Total loss vs Aspect ratio 

The equation for which is obtained from MATLAB and is given as 

 

L2 =  −8.937x2
4 + 260.2x2

3 − 1829x2
2 + 4872x2 − 3672                                                      (iii) 

 

Various formulations for the design optimization problem of the flywheel rotor have been 

published. One of those dealing with geometric parameters reads as 

 

Min f(x) = f(L1, L2)  

Subject to geometric constraints             (iv) 

 

This is a multi-objective problem and many methodologies have been proposed by 

various researchers over the years to solve such optimization problems. In this project we 

consider the first function as the objective function and introduce the second function 

as an inequality constraint. This will be explained in detail in the further sections. 

 

4.3.3.7 Design Variables and Parameters 

 

The various design variables and parameters (other than the rotational speed) which will 

be used here are mentioned in Table 1. All those mentioned in the table but tg are design 

variables. Many design variables directly influence the flywheel setup. For example, it was 

shown in Ha, Yang and Kim (1999) that a lay-up with radially increasing hoop stiffness to 

density ratio is the most beneficial in terms of energy capacity. The rotational speed is 

also a common quantity that influences the specific kinetic energy stored. Thus, there 

exists a critical rotational speed for any type of rotor. However, the rotational speed is 

different from the commonly discussed design variables in that it varies with service 

conditions. Hence it is often considered as a parameter. The below table lists some of the 

quantities. 

 

Quantity Variable 

Split Ratio x1 

Aspect Ratio x2 

Rotor Length (L) x3 

Shaft diameter (2r) x4 

Stator outer diameter (dso) x5 

Flywheel inner radius (Ri) x6 
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Web Thickness (tw) x7 

Flywheel outer radius (Ro) x8 

Flywheel Length (H) x9 

Table 1 Design Variables 

4.3.3.8 Constraints 

 

The design problem stated in Eq. (4) is constrained by the strength limits of the structure, 

geometrical bounds and dynamical considerations. In this work we consider the geometric 

constraints. Geometrical bounds arise from the design of the surrounding components. A 

given shaft, hub or casing geometry can restrict the dimensions of the rotor, i.e. the inner 

and outer radii as well as the axial height. The aspect ratio and the absolute size in 

conjunction with the bearing properties can also necessitate size constraints in terms of 

dynamic stability for large rotational speeds. Similarly the whole flywheel system is 

constrained by the volumetric limits. The following are some of the geometric constraints 

that can be considered 

0.5x4 − x6 + x7 = 0          (v) 
x3

2x2
− 0.5x1x5 + 0.0024 = 0        (vi) 

x6

x8
− 0.49 = 0                     (vii) 

x8
2x9 − 0.0057325 = 0                  

 (viii) 

0.5x4 − x5 ≤ 0         

 (ix) 

0.5x5 − x6 + 0.0025 ≤  0         (x) 

x3 − 0.5x9 + 0.00025 ≤ 0        (xi) 

8.937x2
4 − 260.2x2

3 + 1829x2
2 − 4872x2 + 4432 ≤ 0               

 (xii) 

(x1 − 1)x5 ≤ 0                   

 (xiii) 

0.002 −
x3

x2
− x1x5 ≤ 0                    (xiv) 

x4 −
x3

x2
+ 0.005 ≤ 0         (xv) 
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Figure 14 Flywheel system 

The following table gives the lower and upper bounds on the variables being considered 

in this problem. All these constraint equations and the bounds on the variables are 

derived from the geometric requirements of the design. Equation (viii) is a result of the 

volumetric constraint. Equation (xii) is obtained from equation (iii), where we rewrote the 

equation (iii) as an inequality constraint. The logic behind equation (xii) from equation (iii) 

goes as follows. When we consider only the equation (iii) and minimize it, we get the 

minimum value as 760W. But now we have to consider minimizing equation (ii) along with 

equation (iii). This can be done by minimizing equation (ii) while compromising on the 

minimum value of equation (iii) to some level such that the optimum is reached and 

system performance is maximized. 

 

Variable Lower Bound Upper Bound 

x1 0 1 

x2 1 Inf 

x3 0 inf 

x4 0.05 Inf 

x5 0 Inf 

x6 0 Inf 

x7 0 Inf 

x8 0 0.25 

x9 0 Inf 

Table 2 Lower and upper bounds on variables 

4.3.4 Model analysis 

 

Before sending the problem into the optimizer, it is necessary to conduct some initial study 

on the objective function and constraints. Monotonicity analysis could be employed to 

help determine if the problem is well bounded and determine active constraints. 

 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 

F + . . . . . . . . 

g1 . . . . + - . . . 
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g2 . . + . . . . . - 

g3 . - . . . . . . . 

g4 + . . . - . . . . 

g5 - + - . - . . . . 

g6 . + - + . . . . . 

Table 3 Monotonicity table 

4.3.5 Optimization study 

 

We now have the objective function, various constraint equations and the lower and 

upper bounds on the variables. All we need to do is to optimize the problem. The 

optimization has been carried out with the aid of MATLAB optimization toolbox. 

Optimization Toolbox provides functions for finding parameters that minimize or maximize 

objectives while satisfying constraints. The toolbox includes solvers for linear 

programming, mixed- integer linear programming, quadratic programming, nonlinear 

optimization, and nonlinear least squares. 

 

4.3.5.1 Function formulation in MATLAB 

 

We create a rosenbrock file and enter the objective function as shown in the following 

figure 8.  Rosenbrock is generally used for nonlinear functions. 

 

 
Figure 15 Rosenbrock function script in MATLAB 

4.3.5.2 Constraints function in MATLAB 

 

We create a function for the constraint equations. This is shown in figure 9 below. 

 

 
Figure 16 Nonlinear constraint script in MATLAB 

4.3.5.3 Optimization app 

 

 We start the app using the command optimtool 

 Select fmincon as the solver. 

 Select SQP from the algorithm. 
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 Call the objective function by typing ’@rosenbrock’ in the field. 

 Enter the initial values for the variables. 

 Enter the linear inequalities, equalities and give the lower and upper bounds for the 

variables. 

 Call the nonlinear function by typing ’@unitdisk’ in the field. 

 In the right half pane, select the required plots, modify the iteration tolerance 

values, Hessian etc. as required. 

 Start the optimization. 

 

4.3.5.4 Results 

 

The following table shows the optimal values of the variables obtained in the optimization 

process.  

 
variable Quantity Optimal Value (SI system) 

x1 Split Ratio 0.355 

x2 Aspect Ratio 2.222 

x3 Rotor Length 0.116 

x4 Shaft diameter 0.05 

x5 Stator outer diameter 0.154 

x6 Flywheel inner radius 0.08 

x7 Web Thickness 0.055 

x8 Flywheel outer radius 0.166 

x9 

Fmin 

Flywheel Length 

Minimum function value 

0.232 

753.64 

Table 4 Optimal Values of the design variables 

 

Figure 17 Optimization plots 
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The above figure contains the details of the optimal points, Number of function 

evaluations required and the optimal function value. 

As mentioned earlier, split ratio is the ratio of the stator inner diameter to the stator outer 

diameter. The aspect ratio is the ratio of the rotor length to the rotor outer dia. It can be 

observed from the above results that the shaft diameter is hitting the lower bound. This is 

because of the face that no other constraint is active except the lower bound. To 

mention again, we have stated earlier that we will be considering only the geometric 

constraints in this subsystem. Had we used the strength constraint on the flywheel and the 

shaft, we would have got a value for the shaft diameter which can support the flywheel 

vibrations and its weight. But that part is left for the other subsystems. So just a minimum 

value on the shaft diameter has been considered here. 

  

Similarly, if we observe, we have given an upper bound for the outer radius of the 

flywheel. The reason for this is that when we gave the volume constraint, it can change 

both length of the flywheel or the outer radius of the flywheel. From our analysis, we found 

out that if the upper limit on the flywheel outer radius had not been given, then we get 

a very large flywheel outer radius value and a very small length of the flywheel value. But 

these are not consistent with the practical systems. Hence the upper bound on the outer 

radius has been given.  

 

Further these results do not give the global optimum values. The reason is that most of 

geometric constraints we used are in terms of ratios. So for different initial points we can 

have different optimal values which satisfy the constraint equations. Hence we give the 

volume constraint and give the initial points accordingly. 
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4.4 Optimization of a flywheel system by minimizing the mechanical losses 

 

4.4.1 Introduction 

 

The efficiency of flywheel depends mainly on the capacity to store maximum energy. 

Though our overall objective function will be to maximize the energy stored, maximizing 

of kinetic energy stored can be viewed from a point where we have to reduce the losses 

leading to improved storage of kinetic energy. The major losses in the system is due to the 

frictional and aerodynamic drag force. The other major loss is due to clutch slipping 

 

Total KEveh = Total KEfly + Eloss (friction+aero) + Eloss (clutch) 

 

This project focuses mainly on the flywheel design optimization hence we will be 

concentrating on the drag losses in the flywheel and stator. 

 

 
 

Figure: shows a simple sketch of flywheel along with the drag force in bearing 

 

The two important losses that this subsystem will be dealing will the aerodynamic drag 

force on the surface of flywheel and air frictional losses inside the rotor stator system. 

 
4.4.2 Design Problem Statement 

 

The main design problem here is obtain an optimal point for which the power loss is 

minimal and the values are in feasible range agreeing with the constraints. Thus our 

main objective for this subsystem would be to minimize the energy lost due to drag 

effect and also frictional losses between the web and surrounding air. 
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4.4.3 Mathematical Model 

 

The mathematical model gives a brief insight of the variables, objective and constraints 

of this system 

 

4.4.3.1 Design Variable 

 

Variables Description Units 

Ro Outer radius of flywheel Meter 

Ri Inner radius of flywheel Meter 

H Length of flywheel Meter 

r Radius of shaft Meter 

d Distance from web to top 

of flywheel 

Meter 

 

4.4.3.2 Intermediate parameter 

 

Variables Description Units 

Cd  Coefficient of drag  

Re Reynold’s Number  

Cf  Friction coefficient  

Kf Shape function   

 

4.4.3.3 Material Constants 

 

Variables Description Units 

ρa  Density of air Kg/m3 

ω Angular velocity Rpm 

𝛝 Dynamic viscosity Kg/m-s 

𝛑 Pi constant  

 

4.4.3.4 Objective function 

 

a. Aerodynamic drag losses in the flywheel system 

 

The most notable losses in the system are the aerodynamic drag losses on the surface 

of flywheel due to high speed of rotation.  

 

Flywheel is a simple device which stores torque coupled to a large moment of Inertia.  

The governing equation is simple 

 

T = Iω + Td 

 

where T is shaft torque, Td is the aerodynamic drag toque, I is the rotational moment of 

Inertia and ω denotes the time derivative of angular velocity. The total amount of kinetic 

energy stored in the rotating mass is  
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E=½ Iω2  

 

The aerodynamic drag of spinning flywheel is estimated by considering the shear drag 

on a flat plate, aligned parallel to a fluid stream 

 

Fplate = ½ Cdf ρAV2 

 

where Fplate is the drag force, Cdf is the shear drag coefficient,  ρ is fluid density A is area 

under contact and V is linear velocity. The flywheel is cylindrical with thickness D, we can 

integrate equation over the entire surface of the flywheel, and deduce the total drag 

torque: 

 

 
 

where r is outer radius of flywheel and D is length of flywheel 

 

Pdrag = 𝜌𝑎𝜋 𝐶𝑑𝑓 𝜔3 (
2

5
𝑅𝑜

5 − 𝐻𝑅𝑜
4) 

 

 

where Ro is outer radius of flywheel and H is length of flywheel 

 

A number of empirical formulas exist to determine the drag coefficient and in this case 

the following formula for turbulent flow is used (from Munson et al. (1990)): 

 

 
 

where the Reynolds number Re is based on the flywheel radius and tip speed 

 

𝑅𝑒 = [
𝜌𝑎  𝜔 𝑅𝑜

2

𝜗
] 

 
b.  Air frictional losses in web of flywheel 

 

The ‘I’ shaped web connecting the flywheel and the shaft creates air friction when 

rotating at high speed. An estimation of the loss can be made by approximating the 

geometry of the rotating part of the web as a disc. 
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Figure: A cut section view of flywheel energy storage system 

 

The disc is enclosed in its own cylindrical container. The quota between the axial distance 

from the disc to the enclosure, and the outer radius of the disc determines the topology 

of the flow inside the machine. This quota is called the spacing ratio 

 

 
 

Figure: Schematic picture of a disc rotating inside a cylindrical enclosure. 

 

The arrows describe the radial mass transport occurring in the turbulent flow regimes. Of 

particular interest is the ratio d/r2, called the spacing ratio. The power loss experienced 

by a disc inside a cylindrical enclosure can be written as 

 

Pair = 
(𝐾𝑓𝜌𝑎 𝐶𝑓 𝜔3(𝑅𝑖

5−𝑟5))

2
 

 
where Mdisc is the friction torque on the surface of a smooth, thin rotating disc and kf a 

dimensionless roughness factor (1 for a completely smooth disc).  

 

The friction torque on a rotating disc can further be calculated by the equation: 
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 where ρa is the density of air, ri and ro the inner and outer radii of the disc respectively, 

and Cf the friction coefficient. The friction coefficient depends to a large extent on the 

flow pattern generated between the web and the enclosure. A summary of the 

equations governing the friction coefficient in each of these regions can be found in 

Table 

 

 
 

 
where Re is the so called tip Reynolds number, the Reynolds number of a disk rotating in 

free space, defined as:  

 
and μ is the dynamic viscosity of air.  

 

Regime I and III are characterized by a small air gap between the rotating and static 

surface. The small air gap makes it possible to approximate the flow between the rotating 

and static surfaces as homogenous, either laminar or turbulent. For the large gaps, 

separate boundary layers are formed (regime II and IV). Between the layers, there is a 

core with approximately constant velocity. The laminar boundary layers of region II turn 

turbulent at higher rotational velocities, i.e., Reynolds numbers. 

 

4.4.3.5 Constraints 

 

a. The difference between the inner radius and outer radius of flywheel must be always 

strictly greater than zero.  

 

𝒈𝟏 :  𝑹𝒐 − 𝑹𝒊 > 𝟎 

 

The flywheel cannot be a solid on as there is motor and generator attached to 

lower half of the shaft of flywheel and bearing attached to top of the flywheel. 

 

b. The stress constraint is one of the critical constraint which  relates the Outer radius of 

the flywheel to inner radius of the shaft which is given as follows 

 

𝒈𝟐 :  
𝟑 + 𝝁

𝟒
𝝆𝝎 (𝑹𝒐

𝟐 +
𝟏 − 𝝁

𝟑 + 𝝁
𝒓𝟐) ≤ 𝑺𝒚𝟎 
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 The explanation for the stress criteria has already been given in the first section. 

 

c. The distance of d is taken in a range from the literature which varies from about 1/3   

to 1/4 of length of the shaft. 

 

𝒈𝟑 : 𝒅 − 𝟎. 𝟐𝟓𝑯 ≥ 𝟎 

𝒈𝟒 : 𝒅 − 𝟎. 𝟑𝟑𝑯 ≤ 𝟎 

 

d. The volume of the enclosed container is taken as constant. The volume is total space 

occupied by the flywheel hence it gives a relation between outer radius of flywheel 

and height of the shaft. 

 

𝒈𝟓 :  𝑯𝝅𝑹𝒐
𝟐 = 𝑽𝒐𝒍𝒖𝒎𝒆 

 

e. The radius ratio is a very important constraint obtained from literature. It gives a 

relation between inner and outer radius of the shaft. This is obtained for maximum 

possible specific energy and energy density as explained in the first subsystem. 

 

𝒈𝟔 :  𝑹𝒊/𝑹𝒐 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

 

f. The inner radius of the  
 

𝒈𝟕 : 𝑹𝒊 − 𝒓 > 𝟎 

 

The greater than constraints have been converted to negative null form to be used 

in the optimization toolbox.  In case of strictly greater than equation, it was converted 

to negative null form with some constant value on the right side of the equation. 

 

 

4.4.4 Model Analysis 

 

4.4.4.1 Pre-optimization visualization of influence of variables on the power loss due to 

drag 

 

The variables that influences the drag force that occur in flywheel are Ro and H of the 

flywheel. Before, optimizing them for getting minimal loss in flywheel due to drag forces it 

is necessary to conduct some initial study on the objective function and their effect on 

variables. Thus a contour plot and XY plot was done to get a better understanding on 

the influence of these variables on the total drag loss 

 

A simple plot of variation of outer radius for different values of H (length of flywheel) was 

plotted. This plot shows the nonlinear relation of outer radius with respect to drag force, 

it presents an idea of the great magnitude at which the flywheel drag manifests after 

about 0.15 m. It also shows the influence of H is higher in high radius values compared 

to smaller outer radius. 
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Figure: Plot showing variation of value of Pdrag with respect to Ro for a constant H 

 

The Contour plot of power loss due to drag with respect to outer radius and height gives 

us more holistic view on the effect. This shows a better range of values for our optimization 

range. It can be observed that if outer radius is lesser than 0.25 m it is in range of least 

value for the whole range of height of flywheel, so we understand that a constraint is 

required to restrict these two variables. 

 

 
Figure: Plot showing variation of value of Pdrag with respect to Ro and H 
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4.4.4.2 Pre-optimization visualization of influence of variables on the power loss due to  

air friction 

 

This power loss occurs due to three variables in this case the inner radius of flywheel (Ri) 

distance of web from top of surface container (d) and radius of shaft (r). The plot shows 

the variation of the inner radius of flywheel and radius of shaft for a constant value of 

d=0.1 m which is taken from literature. The XY plot is obtained by finding variation of 

Power loss due to air friction with respect to inner radius of flywheel for different values of 

the inner radius shaft. It is vital point to observe that for a low value of inner flywheel and 

for a very large value of shaft radius the value is negative, this is infeasible from which an 

simple geometric constraint can be derived i.e. the difference between inner radius of 

flywheel and radius of shaft should be strictly positive which is also logical. 

 

Moreover for very small value of shaft radius the curves tend to overlap showing that 

beyond a particular value the reduction in radius of shaft has minimal influence on the 

power loss due to air friction and inner radius of flywheel plays a major part. From this we 

can conclude that we have a minimum value for shaft radius beyond which it plays a 

very less influence on power loss due to drag. 

 

 
 

Figure: Plot showing variation in the air friction loss due to Inner radius of flywheel and 

shaft radius 
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4.4.4.3  Simplification of objective and constraints 

 

The derivation for the objective function is given under section 4.4.3 after which the 

values of the constant are substituted for further simplification of the objective function. 

For the constraints the simplification done for other subsystems apply to this too and have 

been used as such. 

  

4.4.4.4 Trade-off in variables 

  

In this particular system, the trade-off between the variables to other systems are 

significant. If the outer radius is increased then my drag loss will increase rapidly and 

hence my outer radius must be as small as possible. Though height of flywheel has very 

less effect on the drag effect but increase of this variable also amounts to increase in 

drag losses. But for the system where kinetic energy is to be maximized, the radius must 

be large to store lot of energy. Thus we must optimize in such a approach that the energy 

is maximized for a minimal loss due to drag force. 

 

4.4.4.5 Monotonicity table and  Active constraint 

 

A Monotonicity analysis was conducted for all constraints with respect to the variables to 

obtain information on the effect on variables on the constraints and objective. In this 

analysis, a positive sign means that the function is increasing with the increase of variable 

value and negative means the vice versa.  If the variables do not influence the functions 

then they are indicated by a ‘*’ symbol. 

 

It can be observed that all the variables in the objective functions are constrained by at 

least one constraint showing it is property constrained problem for optimization analysis. 

 

 Ro (x(1)) H (x(2)) Ri (x(3)) r (x(4)) d (x(5)) 

f1 + + * * * 

f2 * * + - + 

g1 - * + * * 

g2 + * * + * 

g3 * + * * - 

g4 * - * * + 

g5 * * - + * 

 

For objective f1, g1 and g4 constraints are active 

For objective f2, g5, g2 and g3 constraints are active 
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4.4.5 Optimization Study and results 

 

4.4.5.1 Lower and Upper bounds of the Design Variables 

 
Variables Lower Bound Upper Bound 

Ri 0 inf 

Ro 0 inf 

r 0.01 inf 

d 0 inf 

H 0 0.3 

 

The upper bound for the height of the flywheel is vital as this constrains my objective, if 

upper bound is not given there is a problem arise, it makes the H value too large and 

𝑅𝑜 very small in order to satisfy my volume constraints, but in real time this is not feasible. 

The Flywheel was optimized for a maximum angular velocity of 30000 rpm. 

The lower bound on the radius of shaft is also very important, if lower bound is not given 

it makes Ri very small (or zero) in order to make the cylinder attached to shaft.   

 

4.4.5.2 Optimization procedure 

 

The optimization was done using the fmincon optimization app. This was used because 

the solution to this subsystem can be narrowed down to a particular point where we can 

obtain an optimal value for all the variables. The objective function is well constrained 

and bounded hence using the standard solver to get the optimal solution is feasible. The 

objective and constraint are given as inputs as functions and the bounds and linear 

constraints are given in the form of matrix. The solutions were also found for different 

algorithms like interior points, SQP and Active set with different initial points. It was found 

that the number of iterations were different but the results were quite the same in each 

algorithm used.  

4.4.5.2.1 Function formulation in MATLAB 
 

A script was created to enter the objective function, where f1 is the power loss due to 

drag force and f2 is loss due to air friction. The constants of the equations are substituted 

and simplified before they are entered. Moreover in the first function term we have log 

of a number which might have an imaginary part as the equation solved for getting this 

value has a quadratic term. The function value is the sum of the two individual power loss 

functions. A figure shows how he functions are given as input. 
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Figure: Function file for objective equation for fmincon analysis 

. 

4.4.5.2.2 Constraints function in MATLAB 

 

A MATLAB file for inputting non-linear constraints were created. The stress constraint and 

volume constraint are inputted in the respective equal and inequality constraints 

sections. The material constant along with the maximum speed for the system is inputter 

and saved as nonlcon function file. 

 

  
Figure: Function file for non-linear constraint equation for fmincon analysis 

 

4.4.5.2.3 Optimization toolbox 

 

The optimization was done on fmincon toolbox in the optimization tab in MATLAB, which 

can be used if we have to find a single point solution and if the problem is well bounded 

and constrained. The toolbox gives us many options to use different algorithms like SQP, 

Active set, interior points. An initial point must be given as input to start the iteration. The 

objective function and nonlinear constraints we created must be give as input in 

corresponding sections. Other linear constraints can be given in matrix form in the 

respective spaces depending on whether it is linear or nonlinear equation. The linear 

constraints must be given as matrix in the order of variables in which they are inputted in 

the rest of the simulation. In this subsystem, it is in the form [Ro,H,Ri,r,d] and right side should 

be the value say lesser than or equal  to zero, if there is a value or it is strictly lesser than 
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zero then the corresponding value must be filled. The blonds discussed in the model 

analysis are given and the optimizer is run to obtain the results.  

 

 

Figure: Problem setup and results for fmincon analysis 

 

4.4.5.2.4 Global vs local 

 

For different algorithm and different starting point, the results obtained were the same 

thus indicating the solution reached is a global minimum.  The value of the variables varies 

only marginally for some staring point and does not vary for most of the starting point 

showing it has reached a global optimal value. 

4.4.5.2.5 Discussion of Results 

 

The results from fmincon for different variables for this subsystem is shown in the table 

below. 

 

Variables Value 

Ri 0.138 

Ro 0.068 

r 0.058 

d 0.112 

H 0.3 
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From these results we can infer that radius of shaft is close to 0.06 which has very small 

value of power loss for the corresponding inner radius of flywheel of 0.07 m. This also shows 

that the value of H is hitting the upper bound and there should be more constraints in 

case we have to remove the bound. 

Optimization plots 

 

The above figure contains the details of the optimal points, Number of function 

evaluations required and the optimal function value. 

 

As we have seen earlier the optimal value does not change for different initial values 

showing that we have reached a global optimal. The dimensions we obtained for this 

system are reasonable which can be concluded by evaluating the total loss in the system 

which is about 43 Kw of power which is manifolds the other showing it is primary loss in the 

flywheel. 
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5. System Integration 

5.1 Problem statement 

In previous sections, optimization study for each subsystem has done successfully and 

optimal results have been achieved. In this section we are going to integrate all the 

subsystems in order to find the optimal results for the whole system. As you see in previous 

sections there are several common variables between all the subsystems and there are 

some special variables for each subsystem. For the sake of integration we are going to 

use those common variables as variables and set all the special variables of each 

subsystem as a constant parameters for the integrated system optimization problem. 

5.2 Mathematical Model 

5.2.1 Objective function 

Among all four subsystems, three of them deal with different kinds of energy loss and one 

of them deals with energy stored in system. For the integration of the systems, we decide 

to set the objective function described in section 1 as the whole objective function. 

Beside all the constraints used by this objective function in section 1, we add all other 

three subsystems described in section 2 through 4 as constraints. 

KE = 
1

2
 𝐼𝑝[

𝑚𝑎𝑥
2 - 𝑚𝑖𝑛

2 ]           

5.2.2 Constraints 

In Table 1 lists all the constraints used in overall optimization of system. 

Constraint Type equation 

𝒈𝟏 Losses due to vibrations in 

coupling (Subsystem 2) 
Δ. 𝐾. 𝐸 = [

1

2
𝐼2𝜃2

2̇ (0)]

− [
1

2
𝐼1𝜃1

2̇ (𝑡) +
1

2
𝐼2𝜃2

2̇ (𝑡)] 

𝒈𝟐 Losses due to magnetic 

bearing (Subsystem 3) 

𝑃𝑓𝑒 = 𝐾ℎ𝑓𝐵𝑚
𝑎 + 𝐾𝑒𝑙𝑓𝐵𝑚 

𝒈𝟑 Losses due to other 

mechanical 

 losses (Subsystem 4) 

Pdrag = 𝜌𝑎𝜋 𝐶𝑑𝑓 𝜔3 (
2

5
𝑅𝑜

5 − 𝐻𝑅𝑜
4) 

+ 
(𝐾𝑓𝜌𝑎 𝐶𝑓 𝜔3(𝑅𝑖

5−𝑟5))

2
 

𝒈𝟒 Material strength 3 + 𝜇

4
𝜌

𝑣

𝑅𝑜
(𝑅𝑜

2 +
1 − 𝜇

3 + 𝜇
𝑟2) < 𝑆𝑦 

𝒈𝟓 Volume constraint 𝐻𝜋𝑅𝑜
2 − 0.013 = 0 

𝒈𝟔 Geometric constraint 𝑅𝑖 − 0.49𝑅𝑜 = 0 

𝒈𝟕 Geometric constraint 𝑡𝑤 − 0.2𝐻 ≥ 0 

𝒈𝟖 Geometric constraint 𝑡𝑤 − 0.4𝐻 ≤ 0 

Table 1: Constraints of the system 
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5.2.3 Variables and parameters 

There are five variables for the whole system which is common among all subsystems. The 

parameters for the system are those parameters used by the subsystem described in 

section 1 plus all those special variables of each subsystem. In table 2 and 3 you could 

see variables and parameters used in this system. 

 

Design variables Symbol Notations in 

codes 

Unit 

Inner radius of the flywheel 𝑅𝑖 X(1) m 

Outer radius of the flywheel 𝑅𝑜 X(2) m 

Radius of the shaft 𝑟 X(3) m 

Length of the flywheel 𝐻 X(4) m 

Thickness of the web 𝑡𝑤 X(5) m 

Table 2: List of variables 

 

Design parameters Symbol Unit Values and material used  

Moment of inertia of the CVT 𝐼2 Kg/m2 0.21 / steel 4330 

Density of the material used for 

flywheel 

𝜌 Kg/m3 2810 / Aluminum 

Poisson’s ratio of the material is 

used for flywheel 

𝜇 -- 0.3 / Aluminum 

Yield strength of the material is 

used for flywheel 

𝑆𝑦 MPa 455 / Aluminum 

Equivalent spring constant of 

the coupling 

𝐾 N.m/rad 170 

Equivalent damping 

coefficient of the coupling 

𝐶 Kg.m2/s 0.83 

Table 3: List of parameters 
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5.3 Optimization study 

For the optimization of the integrated system, we used optimization toolbox in MATLAB 

and used three different algorithms under fmincon. 

We tested different initial guesses and the optimal results for each initial guess was same. 

In Table 4 would see the initial guess used for all algorithms and in table 5 below that you 

could see the optimal results for each algorithms. 

 𝑹𝒊 𝑹𝒐 𝒓 𝑯 𝒕𝒘 

Initial Guess 0.5 0.5 0.5 0.5 0.5 

Table 4: Initial guess used in optimization tool 

 

 Iterations 𝑹𝒊 𝑹𝒐 𝒓 𝑯 𝒕𝒘 

Interior Points 262 0.068 0.138 0.047 0.299 0.096 

Active Set 8 0.069 0.14 0.042 0.29 0.116 

SQP 18 0.069 0.14 0.042 0.29 0.116 

Table 5: Optimal results for three different optimization algorithms 

 

5.4 Discussion of the results 

We tried many different initial points besides those values in table. With all those initial 

guesses will reached the same optimal results for each algorithms. It means at the 

moment we have reached global minimum for our problem. 

By looking table we could see all the results based on these three different algorithm are 

almost the same. The only thing that is different for each algorithm is the number of 

iterations. 
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6. Parametric Study 

We have considered Aluminum as the material for the flywheel. The other possible 

materials are Titanium, Steel, composite materials like Carbon-epoxy, etc. For the present 

study we considered Titanium and steel in addition to Aluminum. The properties of these 

materials and the corresponding energy values are given below 

 

Material Poisson’s 

Ratio 

Density MoI (Kgm2) Energy (MJ) 

Aluminum 0.33 2810Kg/m3 0.4634 0.816 

Titanium 0.32 4430kg/m3 0.4525 0.803 

Steel 0.305 7800Kg/m3 0.2909 0.516 

Table 5 Material properties for parametric study 

      Our project is based on Aluminum flywheel. The value of angular speed considered 

was 30000 rpm. The calculations were also carried out for different values of rpm. The 

rotational speeds were chosen over a range from 20000 rpm to 30000 rpm. The influence 

of this variation on the energy stored is shown in the below plot. 

 
Figure: Variation of energy and moment of inertia with respect to angular velocity 

From the above plot we can conclude that in general, with the increase in the rotational 

speed of the flywheel, the energy stored is increasing. But the graph also makes a strong 

statement that though the moment of inertia is decreasing throughout the increase in 

omega, there is still an increase in stored energy. This is because the energy varies directly 

with the moment of inertia and the square of the rotational speed. So the change in 

rotational speed will have greater effect on the energy stored in the flywheel system. 

 

By varying the initial points and solving the optimization problem, it can be observed that 

the variables and the objective function value changes only by a small margin. This shows 

that the local minima obtained by solving this optimization problem is the global minima. 

 

Optimization results after system integration 
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For initial points [0.1;0.1;0.1;0.1;0.1] 

 

For initial points [0.2;0.2;0.2;0.2;0.2] 

 

For initial points [0.05;0.05;0.05;0.05;0.05] 

 

For initial points [0.5;0.5;0.5;0.5;0.5] 

 

7. Conclusion and future work 
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For each subsystem we got optimal results based on objective functions and 

corresponding constraints. Although these values were different for each subsystem, 

they were in a reasonable domain that showed all objective functions and constraints 

have defined well. Also the differences between the optimal values of the variables 

show that there might be some contradictions between optimal results of each 

subsystem. 

 

As described in section 5, we integrated all subsystems together in order to find final 

optimal results for the whole system. For this matter we used the objective function of 

the structural subsystem as an overall objective function and set all other objective 

functions as constraints for that objective function.  

 

The final results that we got as optimal points didn’t match exactly any optimal values 

of subsystems but the optimal results were close enough to them. This thing presents 

that there is a tradeoff between optimal results of each subsystems when they are 

combined together. 

 

This project has thrown us some insight on influence on variation of important 

parameters of flywheel. This project gave us knowledge on how to break a complex 

system in subparts and recombine them to optimize with a particular objective. Being 

a very new technology it has very limited recourses about the details, if more 

constraints are added a better optimization can be done 

 

Speed Obtained 

results 

Actual results Obtained 

Results 

Actual 

Results 

20000 I=0.4593 

Energy=0.161 

KJ 

 Ro=0.1379 m 

Ri=0.0676 m 

r= 0.047 m 

H= 0.299 m 

Tw= 0.096 m 

Ro= 0.14 m 

Ri= 0.07 m 

r=  0.06 m 

H= 0.30 m 

30000 I=0.4593 

Energy=0.816 

MJ 

I=0.45 

Energy=0.8 MJ 

Ro=0.1379 m 

Ri=0.0676 m 

r= 0.047 m 

H= 0.299 m 

Tw= 0.096 m 

Ro= 0.14 m 

Ri= 0.07 m 

r=  0.06 m 

H= 0.30 m 
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APPENDIX 

I: STRUCTURAL SUBSYSTEM 

1. Objective Function 

function f =rosenbrock(x) 

rho=2810; 

f=-(((1/2)*rho*pi)*((x(4)*(x(1)^4-x(3)^4))+(x(5)*(x(2)^4-x(1)^4)))); 

 

2. Non Linear Constraint Equations 

 

function [c,ceq] = unitdisk(x) 

mu=0.33; 

omega=3141.59; 

rho=2810; 

  

c=[((((3+mu)/4)*(rho*((omega)^2))*((x(2)^2+((1-mu)/(3+mu))*x(3)^2)))-455000000)];  

ceq=[x(5)*pi*(((x(2))^2))-0.018]; 

 

3. Radius Ratio vs Specific Energy and Energy Density plot 

 

x=[0;0.1;1]; 

y1=((400^2)/4)*(1+x.^2); 

y2=((2810*(400^2))/4)*(1-x.^4); 

figure 

set(gca,'FontSize',20) 

[hAx,hLine1,hLine2]=plotyy(x,y1,x,y2); 

grid on; 

xlabel('radius ratio') 

ylabel(hAx(1),'specific energy','FontSize',20); 

ylabel(hAx(2),'energy density','FontSize',20); 

legend('y1 = specific energy','y2 =energy density ') 

 

 

4. Inner Radius vs moment of inertia and mass of the flywheel 

 

rho=2810; 

h=0.292; 

R=[0.1:0.05:0.5]; 

r=0.49*R; 

f=(((1/2)*rho*pi)*(h)*((R.^4)-(r.^4))); 

g=(h*pi*((((R-r).^2))))*rho; 

set(gca,'FontSize',20) 

[hAx,hLine1,hLine2]=plotyy(r,f,r,g); 

ylabel(hAx(1),'Moment of inetia','FontSize',20); 

ylabel(hAx(2),'mass of the flywheel','FontSize',20); 

legend('y1 = specific energy','y2 =energy density ') 

xlabel('inner radius ') 
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5.  Contour plot determining the relationship between the inner and outer radius and the 

moment of inertia of the flywheel 

 

rho=2810; 

h=0.292; 

R=[0.1:0.05:0.5]; 

r=0.49*R; 

  

for x1=1:length(R) 

     for y1=1: length(r) 

         x2d(x1,y1)=R(x1) 

         y2d(x1,y1)=r(y1); 

         f(x1,y1)=(((1/2)*rho*pi)*(h)*((R(x1)^4)-(r(y1)^4))); 

          

          

     end 

 end 

 hold on 

 figure(1) 

 contourf (x2d,y2d,f); 

 axis equal 

 xlabel ('R (m)'); 

 ylabel ('H (m)'); 

 

II: VIBRATION SUBSYSTEM 

1. Objective function 
function f = objective(x) 

  
rho = 2810; 

  
% Tw = x(1); 
% H = x(2); 
% Ri = x(3); 
% Ro = x(4); 
% r = x(5); 
% K = x(6); 
% C = x(7); 

  
[t,a,b,c,d] = Sys4ODEsRK4(@TorsionalDthetaOneDt,... 
    @TorsionalDthetaTwoDt,@TorsionalDwDt, @TorsionalDuDt,... 
    0,6.67,0.1,0,0,0,3140,x); 
theta1dot = c(end); 
f = -((1/2)*((1/2)*rho*pi)*((x(1)*(x(3)^4 - x(5)^4)) + (x(2)*... 
    (x(4)^4-x(3)^4))) * theta1dot^2); 

  
End 
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2. Linear constraints / initial guesses  / lower bound, upper bound 
x0 = [0.04, 0.04, 0.08, 0.1, 0.03, 170, 0.45]; 
A = [0 0 1 -1 0 0 0; -1 0.2 0 0 0 0 0; 1 -0.4 0 0 0 0 0; 0 0 -1 0 1 0 

0]; % 
b = [0.001; 0; 0; 0.07]; %  
Aeq = [0 0 1 -0.49 0 0 0]; 
beq = 0; 
lb = 0.01*ones(7*1); 
ub = 500*ones(7*1); 

 

3. Nonlinear constraint 
function [g , h] = nonlincond(x) 

  
Sy = 455e6; 
Mu = 0.33; 
rho = 2810; 
v = 1000; 

  
% Tw = x(1); 
% H = x(2); 
% Ri = x(3); 
% Ro = x(4); 
% r = x(5); 

  
g = ((3+Mu)/4)*rho*((v/x(4))^2)*(x(4)^2*+((1-Mu)/(3+Mu))*x(5)^2) - Sy; 
h = x(2)*(x(4)^2)-0.0041; 
end 

 

 

4. Fourth order Runge-Kutta method for solving ODEs 

function [t,a,b,c,d]=Sys4ODEsRK4(ODE1,ODE2,ODE3,ODE4,A,B,h,a1,b1,c1,d1,x) 
% Sys20DEsRK4 solves a system of two first-order initial value ODEs usinq 
% fourth-order Runqe-Kutta method. 
% The independent variable is t, and the dependent variables are x and y. 
% Input variables: 
% ODE1 Name for the function that calculates da/dt. 
% ODE2 Name for the function that calculates db/dt. 
% ODE3 Name for the function that calculates dc/dt. 
% ODE4 Name for the function that calculates dd/dt. 
% x The first value of t. 
% y The last value of t. 
% h The size of a increment. 
% a1 The initial value of a. 
% b1 The initial value of b. 
% c1 The initial value of c. 
% d1 The initial value of d. 
% Output variables: 
% t A vector with the t coordinate of the solution points. 
% a A vector with the a coordinate of the solution points. 
% b A vector with the b coordinate of the solution points. 
% c A vector with the a coordinate of the solution points. 
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% d A vector with the b coordinate of the solution points. 
t(1) = A; a(1) = a1; b(1) = b1; c(1) = c1; d(1) = d1; 
n = (B - A)/h; 
for i = 1:n 
t(i+1) = t(i) + h; 
tm = t(i) + h/2; 
Ka1 = ODE1(t(i),x,a(i),b(i),c(i),d(i)); 
Kb1 = ODE2(t(i),x,a(i),b(i),c(i),d(i)); 
Kc1 = ODE3(t(i),x,a(i),b(i),c(i),d(i)); 
Kd1 = ODE4(t(i),x,a(i),b(i),c(i),d(i)); 
Ka2 = ODE1(tm,x,a(i)+ Ka1*h/2,b(i)+ Kb1*h/2,c(i)+ Kc1*h/2,d(i)+ Kd1*h/2); 
Kb2 = ODE2(tm,x,a(i)+ Ka1*h/2,b(i)+ Kb1*h/2,c(i)+ Kc1*h/2,d(i)+ Kd1*h/2); 
Kc2 = ODE3(tm,x,a(i)+ Ka1*h/2,b(i)+ Kb1*h/2,c(i)+ Kc1*h/2,d(i)+ Kd1*h/2); 
Kd2 = ODE4(tm,x,a(i)+ Ka1*h/2,b(i)+ Kb1*h/2,c(i)+ Kc1*h/2,d(i)+ Kd1*h/2); 
Ka3 = ODE1(tm,x,a(i)+ Ka2*h/2,b(i)+ Kb2*h/2,c(i)+ Kc2*h/2,d(i)+ Kd2*h/2); 
Kb3 = ODE2(tm,x,a(i)+ Ka2*h/2,b(i)+ Kb2*h/2,c(i)+ Kc2*h/2,d(i)+ Kd2*h/2); 
Kc3 = ODE3(tm,x,a(i)+ Ka2*h/2,b(i)+ Kb2*h/2,c(i)+ Kc2*h/2,d(i)+ Kd2*h/2); 
Kd3 = ODE4(tm,x,a(i)+ Ka2*h/2,b(i)+ Kb2*h/2,c(i)+ Kc2*h/2,d(i)+ Kd2*h/2); 
Ka4 = ODE1(tm,x,a(i)+ Ka3*h/2,b(i)+ Kb3*h/2,c(i)+ Kc3*h/2,d(i)+ Kd3*h/2); 
Kb4 = ODE2(tm,x,a(i)+ Ka3*h/2,b(i)+ Kb3*h/2,c(i)+ Kc3*h/2,d(i)+ Kd3*h/2); 
Kc4 = ODE3(tm,x,a(i)+ Ka3*h/2,b(i)+ Kb3*h/2,c(i)+ Kc3*h/2,d(i)+ Kd3*h/2); 
Kd4 = ODE4(tm,x,a(i)+ Ka3*h/2,b(i)+ Kb3*h/2,c(i)+ Kc3*h/2,d(i)+ Kd3*h/2); 
a(i+1) = a(i) + (Ka1 + 2*Ka2 + 2*Ka3 + Ka4)*h/6; 
b(i+1) = b(i) + (Kb1 + 2*Kb2 + 2*Kb3 + Kb4)*h/6; 
c(i+1) = c(i) + (Kc1 + 2*Kc2 + 2*Kc3 + Kc4)*h/6; 
d(i+1) = d(i) + (Kd1 + 2*Kd2 + 2*Kd3 + Kd4)*h/6; 
end 

 

III: MECHANICAL SUBSYSTEM 

1. Code for plotting power loss due to drag by varying height and radius of flywheel 

clc; 

clear all; 

%Constants 

rho=1.127; 

w=30000*0.10467; 

H=0.1:0.1:0.5; 

Ro=0.10:0.01:0.25; 

  

for x=1:length(H) 

    y=1:length(Ro); 

    Pdrag(x,y)=0; 

for y=1:length(Ro) 

Re=504.03e6*((Ro(y))^2); 

cd=0.455/real((log(Re))^2.58); 

Pdrag(x,y)=pi*rho*(w^3)*cd*(((2/5)*Ro(y)^5)+(H(x)*Ro(y)^4)); 

end 

end 

hold on 

plot(Ro,Pdrag(1,:),'-r') 

plot(Ro,Pdrag(2,:),'-b') 
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plot(Ro,Pdrag(3,:),'-y') 

plot(Ro,Pdrag(4,:),'-g') 

plot(Ro,Pdrag(5,:),'-c') 

xlabel('Outer radius of flywheel (m)');ylabel('P_d') 

legend('H = 0.1','H = 0.2','H = 0.3','H = 0.4','H = 0.5', 'Location','northwest') 

 

2. Contour plot code for power loss due to drag by varying height and radius of 

flywheel 

 

clc; 

clear all 

Ro=[0:0.01:0.5]; 

H=[0:0.01:0.5]; 

rho=1.128; 

v=0.70244*10^-5; 

w=30000*0.10467; 

for x1=1:length(Ro) 

    for y1=1: length(H) 

        x2d(x1,y1)=Ro(x1); 

        y2d(x1,y1)=H(y1); 

        Re=(rho*w*(Ro(x1))^2)/v; 

        cd=0.455/((log(Re))^2.58); 

        P_drag (x1,y1) = pi*rho*cd*w^3*((0.4*(Ro(x1))^5)+(H(y1)*(Ro(x1))^4)); 

         

    end 

end 

  

hold on 

figure(1) 

contourf (x2d,y2d, P_drag); 

axis equal 

xlabel ('Ro (m)'); 

ylabel ('H (m)'); 

  

3. Code for plotting variation of air friction losses 

 

clc; 

clear all; 

%Constants 

rho=1.127; 

w=30000*0.10467; 

%Variables 

dis=0.1:0.1:0.5;             %d as variable 

Ri=0.05:0.0025:0.08;     %Ri inner of flywheel 

r=0.01:0.01:0.06;           %r  radius of shaft  

d=0.1;                       %d as constant 

  

for c=1:length(Ri) 
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b=1:length(r); 

Pair(c,b)=0; 

for b=1:length(r) 

r1=Ri(c); 

r2=r(b); 

Re=504.03e6*r1^2; 

% for e=1:length(dis) 

% d=dis(e);     

cf=0.08/(((d/r1).^(1/6))*((Re)^(1/4))); 

Pair(c,b)= Pair(c,b)+(cf*rho*(w^3)*(r1^5-r2^5)/(2)); 

% end 

end 

end 

Pair; 

% z=[0.1875:0.0025:0.3]'; 

hold on 

plot(Ri,Pair(:,1),'-r') 

plot(Ri,Pair(:,2),'-b') 

plot(Ri,Pair(:,3),'-y') 

plot(Ri,Pair(:,4),'-g') 

plot(Ri,Pair(:,5),'-c') 

plot(Ri,Pair(:,6),'-k') 

xlabel('Inner radius of flywheel (m)');ylabel('P_a_i_r') 

legend('r_s = 0.01','r_s = 0.02','r_s = 0.03','r_s = 0.04','r_s = 0.05','r_s = 0.06', 

'Location','northwest') 

 

 

 


